478 research outputs found

    Effect of grain disorientation on early fatigue crack propagation in face-centred-cubic polycristals: A three-dimensional dislocation dynamics investigation

    Get PDF
    Three-dimensional dislocation dynamics simulations are used to study micro-crack interaction with the first micro-structural barrier in face-centred cubic bi-crystals loaded in high cycle fatigue conditions. In the examined configuration, we assumed that micro-crack transmission occurs due to surface relief growth in the secondary grain ahead of the primary crack. This indirect transmission mechanism is shown to strongly depend on grain-1/grain-2 disorientation. For instance, small grain disorientation induces plastic strain localisation ahead of the crack and faster transmission through the first barrier. Conversely, large grain-1/grain-2 disorientation induces plastic strain spreading similar to crack tip blunting yielding slower indirect transmission. A semi-analytical micro-model is developed based on the present simulation results and complementary experimental observations highlighting the original notion of first-barrier compliance. The model captures well known experimental trends including effects of: grain-size, grain disorientation and micro-crack retardation at the first barrier

    Inter-cluster Thread-to-core Mapping and DVFS on Heterogeneous Multi-cores

    Get PDF
    Heterogeneous multi-core platforms that contain different types of cores, organized as clusters, are emerging, e.g. ARM's big.LITTLE architecture. These platforms often need to deal with multiple applications, having different performance requirements, executing concurrently. This leads to generation of varying and mixed workloads (e.g. compute and memory intensive) due to resource sharing. Run-time management is required for adapting to such performance requirements and workload variabilities and to achieve energy efficiency. Moreover, the management becomes challenging when the applications are multi-threaded and the heterogeneity needs to be exploited. The existing run-time management approaches do not efficiently exploit cores situated in different clusters simultaneously (referred to as inter-cluster exploitation) and DVFS potential of cores, which is the aim of this paper. Such exploitation might help to satisfy the performance requirement while achieving energy savings at the same time. Therefore, in this paper, we propose a run-time management approach that first selects thread-to-core mapping based on the performance requirements and resource availability. Then, it applies online adaptation by adjusting the voltage-frequency (V-f) levels to achieve energy optimization, without trading-off application performance. For thread-to-core mapping, offline profiled results are used, which contain performance and energy characteristics of applications when executed on the heterogeneous platform by using different types of cores in various possible combinations. For an application, thread-to-core mapping process defines the number of used cores and their type, which are situated in different clusters. The online adaptation process classifies the inherent workload characteristics of concurrently executing applications, incurring a lower overhead than existing learning-based approaches as demonstrated in this paper. The classification of workload is performed using the metric Memory Reads Per Instruction (MRPI). The adaptation process pro-actively selects an appropriate V-f pair for a predicted workload. Subsequently, it monitors the workload prediction error and performance loss, quantified by instructions per second (IPS), and adjusts the chosen V-f to compensate. We validate the proposed run-time management approach on a hardware platform, the Odroid-XU3, with various combinations of multi-threaded applications from PARSEC and SPLASH benchmarks. Results show an average improvement in energy efficiency up to 33% compared to existing approaches while meeting the performance requirements

    ACUTE TOXICITY STUDIES OF AQUEOUS SEED EXTRACT OF VIGNA UNGUICULATA IN ALBINO RATS

    Get PDF
    Objective: Increased usage of traditional folklore medicines by the public has led to scientific evaluation of safety of the herbs thereby providing the physicians the data required to employ them in the management of ailments. Seeds of Vigna unguiculata are commonly consumed as vegetables and as a culinary dish in most parts of Asian sub-continent. The present study was carried out to screen phytochemical constituents, evaluate acute toxic effects and determine LD50 of aqueous seed extract of Vigna unguiculata.Methods: Phytochemical screening was carried out as described by Kokate. Acute oral toxicity study was carried out based on OECD guideline 423 and a limit test at a dose of 2000 mg/kg body weight was carried out in female wistar rats. The extract was orally administered in animals at a single dose of 2000mg/kg body weight. Signs of toxicity and mortality were noted after 1, 4 and 24h of administration of the extract for 14 days.Results: Phytochemical screening of the extract revealed the presence of flavonoids, alkaloids and proteins. No mortality and no significant changes were observed in physical observations, behavioral observations, autonomic effects, sensory responses, reflexes, respiratory effects and somatomotor activity in animals which reveal the safety of the extract at dose of 2000 mg/kg body weight.Conclusion: Conclusively, the results suggest that the aqueous extract is not acutely toxic to the rats and LD50 was found to be higher than 2000 mg/kg

    Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem

    Get PDF
    Motivation: The above-ground tissues of higher plants are generated from a small region of cells situated at the plant apex called the shoot apical meristem. An important genetic control circuit modulating the size of the Arabidopsis thaliana meristem is a feed-back network between the CLAVATA3 and WUSCHEL genes. Although the expression patterns for these genes do not overlap, WUSCHEL activity is both necessary and sufficient (when expressed ectopically) for the induction of CLAVATA3 expression. However, upregulation of CLAVATA3 in conjunction with the receptor kinase CLAVATA1 results in the downregulation of WUSCHEL. Despite much work, experimental data for this network are incomplete and additional hypotheses are needed to explain the spatial locations and dynamics of these expression domains. Predictive mathematical models describing the system should provide a useful tool for investigating and discriminating among possible hypotheses, by determining which hypotheses best explain observed gene expression dynamics. Results: We are developing a method using in vivo live confocal microscopy to capture quantitative gene expression data and create templates for computational models. We present two models accounting for the organization of the WUSCHEL expression domain. Our preferred model uses a reaction-diffusion mechanism in which an activator induces WUSCHEL expression. This model is able to organize the WUSCHEL expression domain. In addition, the model predicts the dynamical reorganization seen in experiments where cells, including the WUSCHEL domain, are ablated, and it also predicts the spatial expansion of the WUSCHEL domain resulting from removal of the CLAVATA3 signal

    Impact Analysis of A Car Bumper Using Carbon Fiber Reinforced PEI And S2 Glass/Epoxy Materials By Solid Works Software

    Get PDF
    Bumper is an important part which is used as protection for passengers from front and rear collision. The intend of this study was to investigate the structure and material employed for car bumper in one of the car manufacturer. In this study, the most important variables like material, structures, shapes and impact conditions are studied for analysis of the bumper beam in order to improve the crashworthiness during collision. The simulation of a bumper is characterized by impact modeling using Pro/Engineer, impact analysis is done by COSMOS according to the speed that is 13.3 m sec-1 (48 km h-1) given in order to analyze the results. This speed is according to regulations of Federal Motor Vehicle Safety Standards, FMVSS 208- Occupant Crash Protection whereby the purpose and scope of this standard specifies requirements to afford impact protection for passengers

    A Quantitative and Dynamic Model for Plant Stem Cell Regulation

    Get PDF
    Plants maintain pools of totipotent stem cells throughout their entire life. These stem cells are embedded within specialized tissues called meristems, which form the growing points of the organism. The shoot apical meristem of the reference plant Arabidopsis thaliana is subdivided into several distinct domains, which execute diverse biological functions, such as tissue organization, cell-proliferation and differentiation. The number of cells required for growth and organ formation changes over the course of a plants life, while the structure of the meristem remains remarkably constant. Thus, regulatory systems must be in place, which allow for an adaptation of cell proliferation within the shoot apical meristem, while maintaining the organization at the tissue level. To advance our understanding of this dynamic tissue behavior, we measured domain sizes as well as cell division rates of the shoot apical meristem under various environmental conditions, which cause adaptations in meristem size. Based on our results we developed a mathematical model to explain the observed changes by a cell pool size dependent regulation of cell proliferation and differentiation, which is able to correctly predict CLV3 and WUS over-expression phenotypes. While the model shows stem cell homeostasis under constant growth conditions, it predicts a variation in stem cell number under changing conditions. Consistent with our experimental data this behavior is correlated with variations in cell proliferation. Therefore, we investigate different signaling mechanisms, which could stabilize stem cell number despite variations in cell proliferation. Our results shed light onto the dynamic constraints of stem cell pool maintenance in the shoot apical meristem of Arabidopsis in different environmental conditions and developmental states

    Renalase Gene Polymorphisms in Patients With Type 2 Diabetes, Hypertension and Stroke

    Get PDF
    Renalase is a novel, recently identified, flavin adenine dinucleotide-dependent amine oxidase. It is secreted by the kidney and metabolizes circulating catecholamines. Renalase has significant hemodynamic effects, therefore it is likely to participate in the regulation of cardiovascular function.The aim of our study was to investigate the involvement of renalase gene polymorphisms in hypertension in type 2 diabetes patients. A total of 892 patients and 400 controls were genotyped with three SNPs in the renalase gene. The C allele of rs2296545 SNP was associated with hypertension (P < 0.01). For rs2576178 SNP, frequencies in hypertensive patients differed from controls, but not from normotensive patients. For rs10887800 SNP, the differences in the G allele frequencies were observed in hypertensive patients with stroke, with 66% of patients being GG homozygotes. To confirm observed association we later genotyped 130 stroke patients without diabetes. The OR for risk allele was 1.79 (95% CI 1.33–2.41). In conclusion, the renalase gene polymorphism was associated with hypertension in type 2 diabetes patients. The most interesting result is a strong association of the rs10887800 polymorphism with stroke in patients with and without diabetes. The G allele of this polymorphism might thus be useful in identifying diabetes patients at increased risk of stroke

    A Modeling Study on How Cell Division Affects Properties of Epithelial Tissues Under Isotropic Growth

    Get PDF
    Cell proliferation affects both cellular geometry and topology in a growing tissue, and hence rules for cell division are key to understanding multicellular development. Epithelial cell layers have for long times been used to investigate how cell proliferation leads to tissue-scale properties, including organism-independent distributions of cell areas and number of neighbors. We use a cell-based two-dimensional tissue growth model including mechanics to investigate how different cell division rules result in different statistical properties of the cells at the tissue level. We focus on isotropic growth and division rules suggested for plant cells, and compare the models with data from the Arabidopsis shoot. We find that several division rules can lead to the correct distribution of number of neighbors, as seen in recent studies. In addition we find that when also geometrical properties are taken into account other constraints on the cell division rules result. We find that division rules acting in favor of equally sized and symmetrically shaped daughter cells can best describe the statistical tissue properties

    A Systematic Review of Mosquito Coils and Passive Emanators: Defining Recommendations for Spatial Repellency Testing Methodologies.

    Get PDF
    Mosquito coils, vaporizer mats and emanators confer protection against mosquito bites through the spatial action of emanated vapor or airborne pyrethroid particles. These products dominate the pest control market; therefore, it is vital to characterize mosquito responses elicited by the chemical actives and their potential for disease prevention. The aim of this review was to determine effects of mosquito coils and emanators on mosquito responses that reduce human-vector contact and to propose scientific consensus on terminologies and methodologies used for evaluation of product formats that could contain spatial chemical actives, including indoor residual spraying (IRS), long lasting insecticide treated nets (LLINs) and insecticide treated materials (ITMs). PubMed, (National Centre for Biotechnology Information (NCBI), U.S. National Library of Medicine, NIH), MEDLINE, LILAC, Cochrane library, IBECS and Armed Forces Pest Management Board Literature Retrieval System search engines were used to identify studies of pyrethroid based coils and emanators with key-words "Mosquito coils" "Mosquito emanators" and "Spatial repellents". It was concluded that there is need to improve statistical reporting of studies, and reach consensus in the methodologies and terminologies used through standardized testing guidelines. Despite differing evaluation methodologies, data showed that coils and emanators induce mortality, deterrence, repellency as well as reduce the ability of mosquitoes to feed on humans. Available data on efficacy outdoors, dose-response relationships and effective distance of coils and emanators is inadequate for developing a target product profile (TPP), which will be required for such chemicals before optimized implementation can occur for maximum benefits in disease control

    Honey Bee PTEN – Description, Developmental Knockdown, and Tissue-Specific Expression of Splice-Variants Correlated with Alternative Social Phenotypes

    Get PDF
    Phosphatase and TENsin (PTEN) homolog is a negative regulator that takes part in IIS (insulin/insulin-like signaling) and Egfr (epidermal growth factor receptor) activation in Drosophila melanogaster. IIS and Egfr signaling events are also involved in the developmental process of queen and worker differentiation in honey bees (Apis mellifera). Here, we characterized the bee PTEN gene homologue for the first time and begin to explore its potential function during bee development and adult life.Honey bee PTEN is alternatively spliced, resulting in three splice variants. Next, we show that the expression of PTEN can be down-regulated by RNA interference (RNAi) in the larval stage, when female caste fate is determined. Relative to controls, we observed that RNAi efficacy is dependent on the amount of PTEN dsRNA that is delivered to larvae. For larvae fed queen or worker diets containing a high amount of PTEN dsRNA, PTEN knockdown was significant at a whole-body level but lethal. A lower dosage did not result in a significant gene down-regulation. Finally, we compared same-aged adult workers with different behavior: nursing vs. foraging. We show that between nurses and foragers, PTEN isoforms were differentially expressed within brain, ovary and fat body tissues. All isoforms were expressed at higher levels in the brain and ovaries of the foragers. In fat body, isoform B was expressed at higher level in the nurse bees.Our results suggest that PTEN plays a central role during growth and development in queen- and worker-destined honey bees. In adult workers, moreover, tissue-specific patterns of PTEN isoform expression are correlated with differences in complex division of labor between same-aged individuals. Therefore, we propose that knowledge on the roles of IIS and Egfr activity in developmental and behavioral control may increase through studies of how PTEN functions can impact bee social phenotypes
    corecore