7,087 research outputs found

    The compound Poisson limit ruling periodic extreme behaviour of non-uniformly hyperbolic dynamics

    Full text link
    We prove that the distributional limit of the normalised number of returns to small neighbourhoods of periodic points of non-uniformly hyperbolic dynamical systems is compound Poisson. The returns to small balls around a fixed point in the phase space correspond to the occurrence of rare events, or exceedances of high thresholds, so that there is a connection between the laws of Return Times Statistics and Extreme Value Laws. The fact that the fixed point in the phase space is a repelling periodic point implies that there is a tendency for the exceedances to appear in clusters whose average sizes is given by the Extremal Index, which depends on the expansion of the system at the periodic point. We recall that for generic points, the exceedances, in the limit, are singular and occur at Poisson times. However, around periodic points, the picture is different: the respective point processes of exceedances converge to a compound Poisson process, so instead of single exceedances, we have entire clusters of exceedances occurring at Poisson times with a geometric distribution ruling its multiplicity. The systems to which our results apply include: general piecewise expanding maps of the interval (Rychlik maps), maps with indifferent fixed points (Manneville-Pomeau maps) and Benedicks-Carleson quadratic maps.Comment: To appear in Communications in Mathematical Physic

    A study on intermediate buffer layer of a coated Fiber Bragg grating cryogenic temperature sensors

    Get PDF
    The sensor characteristics of a coated Fiber Bragg grating (FBG) thermal sensor for cryogenic temperatures depends mainly on the coating materials. The sensitivity of the coated FBG can be improved by enhancing the effective thermal strain transfer between the different layers and the bare FBG. The dual coated FBG’s has a primary layer and the secondary layer. The primary coating acts as an intermediate buffer between the secondary coating and the bare FBG. The outer secondary coating is normally made of metals with high thermal expansion coefficient. In this work, a detailed study is carried out on chromium and titanium intermediate buffer layers with various coating thicknesses and combinations. To improve the sensitivity, the secondary coating layer was tested with Indium, Lead and Tin. The sensors were then calibrated in a cryogenic temperature calibration facility at Institute of Technical Physics (ITEP), Karlsruhe Institute of Technology. The sensors were subjected to several thermal cycles between 4.2 and 80 K to study the sensor performance and its thermal characteristics. The sensor exhibits a Bragg wavelength shift of 13pm at 20K. The commercially available detection equipment with a resolution of 1pm can result in a temperature resolution of 0.076 K at 20K

    The importance of plume rise on the concentrations and atmospheric impacts of biomass burning aerosol

    Get PDF
    We quantified the effects of the plume rise of biomass burning aerosol and gases for the forest fires that occurred in Saskatchewan, Canada, in July 2010. For this purpose, simulations with different assumptions regarding the plume rise and the vertical distribution of the emissions were conducted. Based on comparisons with observations, applying a one-dimensional plume rise model to predict the injection layer in combination with a parametrization of the vertical distribution of the emissions outperforms approaches in which the plume heights are initially predefined. Approximately 30 % of the fires exceed the height of 2 km with a maximum height of 8.6 km. Using this plume rise model, comparisons with satellite images in the visible spectral range show a very good agreement between the simulated and observed spatial distributions of the biomass burning plume. The simulated aerosol optical depth (AOD) with data of an AERONET station is in good agreement with respect to the absolute values and the timing of the maximum. Comparison of the vertical distribution of the biomass burning aerosol with CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) retrievals also showed the best agreement when the plume rise model was applied. We found that downwelling surface short-wave radiation below the forest fire plume is reduced by up to 50 % and that the 2 m temperature is decreased by up to 6 K. In addition, we simulated a strong change in atmospheric stability within the biomass burning plume

    Temperature dependent photoluminescence of organic semiconductors with varying backbone conformation

    Get PDF
    We present photoluminescence studies as a function of temperature from a series of conjugated polymers and a conjugated molecule with distinctly different backbone conformations. The organic materials investigated here are: planar methylated ladder type poly para-phenylene, semi-planar polyfluorene, and non-planar para hexaphenyl. In the longer-chain polymers the photoluminescence transition energies blue shift with increasing temperatures. The conjugated molecules, on the other hand, red shift their transition energies with increasing temperatures. Empirical models that explain the temperature dependence of the band gap energies in inorganic semiconductors can be extended to explain the temperature dependence of the transition energies in conjugated molecules.Comment: 8 pages, 9 figure

    Increase in the magnitude of the energy barrier distribution in Ni nanoparticles due to dipolar interactions

    Full text link
    The energy barrier distribution Eb of five samples with different concentrations x of Ni nanoparticles using scaling plots from ac magnetic susceptibility data has been determined. The scaling of the imaginary part of the susceptibility Chi"(nu, T) vs. Tln(t/tau_0) remains valid for all samples, which display Ni nanoparticles with similar shape and size. The mean value increases appreciably with increasing x, or more appropriately with increasing dipolar interactions between Ni nanoparticles. We argue that such an increase in constitutes a powerful tool for quality control in magnetic recording media technology where the dipolar interaction plays an important role.Comment: 3 pages, 3 figures, 1 tabl

    A frictionless microswimmer

    Get PDF
    We investigate the self-locomotion of an elongated microswimmer by virtue of the unidirectional tangential surface treadmilling. We show that the propulsion could be almost frictionless, as the microswimmer is propelled forward with the speed of the backward surface motion, i.e. it moves throughout an almost quiescent fluid. We investigate this swimming technique using the special spheroidal coordinates and also find an explicit closed-form optimal solution for a two-dimensional treadmiler via complex-variable techniques.Comment: 6 pages, 4 figure
    • …
    corecore