942 research outputs found

    Strategies to Reverse Endothelial Progenitor Cell Dysfunction in Diabetes

    Get PDF
    Bone-marrow-derived cells-mediated postnatal vasculogenesis has been reported as the main responsible for the regulation of vascular homeostasis in adults. Since their discovery, endothelial progenitor cells have been depicted as mediators of postnatal vasculogenesis for their peculiar phenotype (partially staminal and partially endothelial), their ability to differentiate in endothelial cell line and to be incorporated into the vessels wall during ischemia/damage. Diabetes mellitus, a condition characterized by cardiovascular disease, nephropathy, and micro- and macroangiopathy, showed a dysfunction of endothelial progenitor cells. Herein, we review the mechanisms involved in diabetes-related dysfunction of endothelial progenitor cells, highlighting how hyperglycemia affects the different steps of endothelial progenitor cells lifetime (i.e., bone marrow mobilization, trafficking into the bloodstream, differentiation in endothelial cells, and homing in damaged tissues/organs). Finally, we review preclinical and clinical strategies that aim to revert diabetes-induced dysfunction of endothelial progenitor cells as a means of finding new strategies to prevent diabetic complications

    TMEM219 regulates the transcription factor expression and proliferation of beta cells

    Get PDF
    Pancreatic beta cells replenishment is considered the next therapeutic option for type 1 diabetes; while stimulating endogenous beta cells proliferation is the “holy grail” for those patients with exhausted beta cell mass. Here we are demonstrating that the pro-apoptotic receptor TMEM219 is expressed in fetal pancreas, in beta cell precursors and in in vitro embryonic-derived endocrine progenitors. TMEM219 signaling negatively regulates beta cells at early stages and induces Caspase 8-mediated cell death. Pharmacological blockade of TMEM219 further rescued beta cell precursor and proliferation markers, and decreased cell death, both in islets and in in vitro-derived endocrine progenitors, allowing for beta cell preservation. While addressing the upstream controlling TMEM219 expression, we determined the TMEM219 miRNet; indeed, one of those miRNAs, miR-129-2, is highly expressed in human islets, particularly in patients at risk or with established type 1 diabetes. miR-129-2 mimic downregulated TMEM219 expression in islets, in in vitro embryonic-derived endocrine progenitors and in highly proliferating insulinoma-derived cells. Moreover, miR-129-2 inhibitor induced a TMEM219 overexpression in insulinoma-derived cells, which restored cell proliferation and functional markers, thus acting as endogenous regulator of TMEM219 expression. The TMEM219 upstream regulator miR129-2 controls the fate of beta cell precursors and may unleash their regenerative potentials to replenish beta cells in type 1 diabetes

    Prolonged, Low-Dose Anti-Thymocyte Globulin, Combined with CTLA4-Ig, Promotes Engraftment in a Stringent Transplant Model

    Get PDF
    Background: Despite significant nephrotoxicity, calcineurin inhibitors (CNIs) remain the cornerstone of immunosuppression in solid organ transplantation. We, along with others, have reported tolerogenic properties of anti-thymocyte globulin (ATG, Thymoglobulin®), evinced by its ability both to spare Tregs from depletion in vivo and, when administered at low, non-depleting doses, to expand Tregs ex vivo. Clinical trials investigating B7/CD28 blockade (LEA29Y, Belatacept) in kidney transplant recipients have proven that the replacement of toxic CNI use is feasible in selected populations. Methods: Rabbit polyclonal anti-murine thymocyte globulin (mATG) was administered as induction and/or prolonged, low-dose therapy, in combination with CTLA4-Ig, in a stringent, fully MHC-mismatched murine skin transplant model to assess graft survival and mechanisms of action. Results: Prolonged, low-dose mATG, combined with CTLA4-Ig, effectively promotes engraftment in a stringent transplant model. Our data demonstrate that mATG achieves graft acceptance primarily by promoting Tregs, while CTLA4-Ig enhances mATG function by limiting activation of the effector T cell pool in the early stages of treatment, and by inhibiting production of anti-rabbit antibodies in the maintenance phase, thereby promoting regulation of alloreactivity. Conclusion: These data provide the rationale for development of novel, CNI-free clinical protocols in human transplant recipients

    Real world effectiveness of subcutaneous semaglutide in type 2 diabetes: A retrospective, cohort study (Sema-MiDiab01)

    Get PDF
    IntroductionAim of the present study was to evaluate the real-world impact of once-weekly (OW) subcutaneous semaglutide on different end-points indicative of metabolic control, cardiovascular risk factors, and beta-cell function in type 2 diabetes (T2D).MethodsThis was a retrospective, observational study conducted in 5 diabetes clinics in Italy. Changes in HbA1c, fasting blood glucose (FBG), body weight, blood pressure, lipid profile, renal function, and beta-cell function (HOMA-B) during 12 months were evaluated.ResultsOverall, 594 patients (97% GLP-1RA naïve) were identified (mean age 63.9 ± 9.5 years, 58.7% men, diabetes duration 11.4 ± 8.0 years). After 6 months of treatment with OW semaglutide, HbA1c levels were reduced by 0.90%, FBG by 26 mg/dl, and body weight by 3.43 kg. Systolic blood pressure, total and LDL-cholesterol significantly improved. Benefits were sustained at 12 months. Renal safety was documented. HOMA-B increased from 40.2% to 57.8% after 6 months (p<0.0001).DiscussionThe study highlighted benefits of semaglutide on metabolic control, multiple CV risk factors, and renal safety in the real-world. Semaglutide seems to be an advisable option for preservation of β-cell function and early evidence suggests it might have a role in modifying insulin resistance (HOMA-IR), the pathogenetic basis of prediabetes and T2D
    corecore