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Immunomodulation by Mesenchymal Stem Cells
A Potential Therapeutic Strategy for Type 1 Diabetes
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Mesenchymal stem cells (MSCs) are pluripotent stromal
cells that have the potential to give rise to cells of diverse
lineages. Interestingly, MSCs can be found in virtually all
postnatal tissues. The main criteria currently used to
characterize and identify these cells are the capacity for
self-renewal and differentiation into tissues of mesodermal
origin, combined with a lack in expression of certain
hematopoietic molecules. Because of their developmental
plasticity, the notion of MSC-based therapeutic interven-
tion has become an emerging strategy for the replacement
of injured tissues. MSCs have also been noted to possess
the ability to impart profound immunomodulatory effects
in vivo. Indeed, some of the initial observations regarding
MSC protection from tissue injury once thought mediated
by tissue regeneration may, in reality, result from immu-
nomodulation. Whereas the exact mechanisms underlying
the immunomodulatory functions of MSC remain largely
unknown, these cells have been exploited in a variety of
clinical trials aimed at reducing the burden of immune-
mediated disease. This article focuses on recent advances
that have broadened our understanding of the immuno-
modulatory properties of MSC and provides insight as to
their potential for clinical use as a cell-based therapy for
immune-mediated disorders and, in particular, type 1 dia-
betes. Diabetes 57:1759–1767, 2008

WHAT ARE MESENCHYMAL STEM CELLS?

Historical perspective, definitions, and tissue local-
ization. More than a century ago, the presence of progen-
itor cells in the bone marrow with the capability of
differentiating to bone were identified (1,2). A series of
landmark observations by Friedenstein and colleagues
(3,4) led to identification of the clonogenic potential of
fibroblast-like cells residing in bone marrow (1). By low-
density culturing of bone marrow on plastic culture
dishes, Friedenstein and colleagues were able to discard
nonadherent hematopoietic stem cells and identify plastic-
adherent cells or colony-forming unit fibroblasts, which
were later introduced largely by Owen (5) as mesenchymal

stromal cells. The term “mesenchymal stem cells” (MSC)
appeared in the early 1980s (6) and was largely popular-
ized by Caplan (7). Although studies highlighting the
differentiation capabilities of MSC into various cell lin-
eages including bone, cartilage, and adipose tissue have
been repeatedly described over the past decade, some
investigators argue that the “stemness” of MSCs is lacking,
proposing instead to use the term “multipotent mesenchy-
mal stromal cells” (8). While the acronym MSC has be-
come the predominant term used within the literature, no
matter what terminology one chooses to use, the field
investigating these cells has grown rapidly because of the
marked potential in terms of therapeutic exploitation.

As noted previously, MSCs are self-renewable multipo-
tent progenitor cells that have the potential to differentiate
into various lineages (9). Whereas bone marrow MSCs
represent a rare population of cells that make up only
0.001 to 0.01% of total nucleated cells and are 10-fold less
abundant than hematopoietic stem cells, they can be
readily grown and expanded in culture (10). The frequency
of MSCs in postnatal bone marrow has been reported to
decline with increasing age (11). Much of our knowledge
regarding MSCs has been generated from studies using
bone marrow–derived MSCs. However, the source tissue
for studies of MSCs has recently been expanded to cells
deriving from virtually all tissues including muscle, adi-
pose tissue, and umbilical cord blood (12). It is important
to note that the origin of MSCs may determine their fate
and functional characteristics (13). Furthermore, whereas
the exact functions of MSCs within tissues remain largely
unknown, they appear to exert different functions in
specific tissues where they reside. For instance, in bone
marrow, they are reported to represent the precursor cell
for stromal tissues that support hematopoiesis (14). In
other tissues, upon receiving appropriate biological sig-
nals during tissue injury or inflammation, they may differ-
entiate into specialized cells and play a pivotal role in
tissue repair and/or control of inflammation in situ.
MSC characteristics and methods for their isolation.
From the outset, it is important to note that there is no
universally agreed upon set or specific singular marker to
identify these cells. As a result, a battery of negative and
positive markers is generally used to phenotypically char-
acterize these cells. MSCs generally lack specific cell
surface markers of hematopoietic cells (CD14, CD34,
CD11a/LFA-1, and CD45), erythrocytes (glycophorin A),
and platelet and endothelial cell adhesion molecules
(CD31). They express variable levels of CD105 (SH2),
CD73 (SH3/4), CD44, stromal antigen 1, and a group of
other adhesion molecules and receptors including CD166
(vascular cell adhesion molecule), CD54/CD102 (intracel-
lular adhesion molecule), and CD49 (very late antigen)
(15). Finally, their ability to differentiate into several
mesenchymal lineages has also been used as an identity
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marker (1). It is also important to recognize that the
specificity of some of these markers vary when discussing
MSC derived from humans versus mice (Table 1). To date,
identification of MSCs in vivo has also been difficult and
challenging.

It is interesting that since the first description of MSCs
by Friedenstein et al. (3), this method for isolation has
largely remained the “standard of practice,” being the
adherence of fibroblast-like cells (when isolating cells
recovered from bone marrow) to the plastic substrate of a
cell culture plate, together with a concurrent lack of
adherence of marrow-derived hematopoietic cells (16).
Additionally, reports exist proposing negative selection to
exclude hematopoietic stem cells, or using positive selec-
tions for some of the MSC markers for the purpose of
enriching MSCs (9).

FUNCTIONAL ACTIVITIES OF MSCs

Immunomodulatory properties of MSCs in vitro. The
immunomodulatory properties of MSCs were initially re-
ported in T-cell proliferation assays using one of a variety
of stimuli including mitogens, CD3/CD28, and alloantigens;
settings where the ability of MSCs to suppress T-cell
proliferation can readily be determined (17,18). Such
suppression occurs irrespective of donor source, including
settings in which one uses “third party” MSCs. MSCs also
significantly reduce the expression of certain activation
markers including CD25, CD38, and CD69 on PHA-stimu-
lated lymphocytes (18); suppress proliferation of both
CD4� and CD8� lymphocytes; and are able to abrogate the
response of memory T-cells to their antigen (19).

The immunomodulatory ability of MSCs appears to take
effect before the secretion of interleukin (IL)-2, since
MSC-mediated anti-proliferative effects on mitogen-stimu-
lated peripheral blood lymphocytes can be reversed (in
part) by the addition of exogenous IL-2 (17). Additional
studies have noted that supernatants of MSCs were unable
to suppress proliferation (15). However, using a transwell
culture system with a semipermeable membrane to sepa-
rate MSC from leukocytes, one effort did note an inhibitory
function in terms of suppression, findings that suggest the

presence of soluble factors capable of suppression (20).
Among the many candidates that could represent such a
soluble factor, members of the transforming growth factor
superfamily (transforming growth factor-�), hepatic
growth factors, prostaglandin E2, and IL-10 secreted by
MSCs have all been found to suppress T-cell–mediated
antigen responses in vitro (9). Furthermore, Meisel et al.
(21) reported induction indolamine 2,3-dioxygenase ex-
pression by MSC stimulated with interferon (IFN)-�. Thus,
MSC inhibition of T-cell proliferation could also be due to
a depletion of tryptophan (i.e., indolamine 2,3-dioxygenase
catalyzes the conversion of tryptophan to kynurenin) and
subsequent inhibition of T-cell proliferation. Inducible
nitric oxide synthase and heme oxygenase-1 expressed by
MSCs have also been implicated for their immunosuppres-
sive properties (22,23). It is likely that these mechanisms
are not mutually exclusive and that the relative contribu-
tion of each mechanism to modulating immune responses
varies in different experimental models. It is also interest-
ing to hypothesize that immunomodulation of MSCs in
different tissues may be mediated by different factors. One
should note, however, that lack of standardization in
isolation and culture conditions and strain-dependent vari-
ation has given rise to conflicting findings and interpreta-
tions (24).
MSC interactions with T- and B-cells, dendritic cells,
and natural killer cells. In addition to the soluble
factors, MSCs appear to engage themselves in several
other pathways regulating T-cell function. The engage-
ment of the inhibitory molecule programmed death 1
(PD-1) to its ligands PD-L1 and PD-L2 has also been
demonstrated to be responsible for inhibition of T-cell
proliferation via direct contact of MSCs and target cells,
leading both to modulate the expression of different
cytokine receptors and transduction molecules for cyto-
kine signaling (25). In addition to antigen recognition
through the T-cell receptor, T-cell activation requires
costimulatory signals involving specific molecules on the
surface of both T-cells and dendritic cells. Given the
absence of surface expression of key costimulatory mole-
cules by MSCs, it has been proposed that MSCs could also
render T-cells anergic, although there is still controversy
surrounding the robustness of this hypo-responsiveness
(20). Finally, MSCs have been shown to increase either
CD4�CD25� cells or CD4�CD25�FoxP3� cells in different
models and assays (26). Bone marrow–derived MSCs have
been found to have inhibitory effects on the proliferation
and IgG secretion of B-cells in BXSB mice, a model for
systemic lupus erythematosus (27). When MSCs isolated
from the bone marrow and B-cells extracted from the
peripheral blood of healthy donors were co-cultured with
different B-cell stimuli, such as anti-CD40 and anti–IL-4,
B-cell proliferation and immunoglobulin production were
inhibited through production of soluble factors (28).

MSCs may also regulate immune response through
interacting with dendritic cells. MSCs not only could
inhibit differentiation of monocytes into dendritic cells but
could also inhibit dendritic cell maturation, giving rise to
immature dendritic cell that could subsequently render
T-cells anergic (29). MSCs have also been shown to alter
the cytokine secretion profile of dendritic cells toward
upregulation of regulatory cytokines such as IL-10 and
downregulation of inflammatory cytokines such as IFN-�,
IL-12, and tumor necrosis factor-�, inducing a more anti-
inflammatory or tolerant dendritic cell phenotype (24,29).

Natural killer (NK)-MSC interactions have also been the

TABLE 1
Markers used to characterize or extract human and murine MSCs

Human MSCs Murine MSCs

FACS markers
CD10 � �/�
CD11b � �
CD13 � �/�
CD29 �� ��
CD31 �/� �
CD34 � �/�
CD44 �� ��
CD45 � �
CD73 �� 0
CD90 �� �/�
CD105 �� �
CD106 �� �
CD117 �/� �
Stro-1 � �
Flk-1 �/� �
Sca-1 � �/�

CD, cluster of differentiation; FACS, fluorescence-activated cell
sorter; Flk-1, vascular endothelial growth factor receptor 1; Stro-1,
stromal antigen 1; Sca-1, stem cell antigen 1.
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subject of investigation for the purpose of understanding
the mechanisms(s) of immunomodulatory action afforded
by MSCs. NK cells display natural cytolytic activity against
the cells that are missing markers of self-major histocom-
patibility complex (MHC) class I. Although initially it was
thought that MSCs could escape NK cell immunosurveil-
lance, it was recently shown that NK cells can also
efficiently lyse MSCs, despite the expression of high levels
of HLA-I by MSCs (30,31). The NK receptors NKp30,
NKG2D, and DNAM-1 were implicated in the process of
NK-mediated cytotoxicity against MSCs. MSCs express the
counterpart ligands for activating NK receptors (32,33).
However, MSCs could suppress proliferation of NK cells,
decrease the secretion of IFN-� by IL-2–stimulated NK
cells, and affect cytotoxicity against HLA class I–express-
ing targets. Combination effects of cell-to-cell contact and
soluble factors, including transforming growth factor-�1
and prostaglandin E2, are reported to be responsible for
this observation (34).

One additional and crucial feature of MSCs is their
ability to selectively migrate to sites of injury. Chemokines
are increasingly being recognized as the key regulators of
this preferential migration, and since MSCs express a
variety of chemokine receptors and adhesion molecules
(35), they are also likely to be of significance in vivo.
Finally, interactions between MSCs and endothelial cells
have been shown to be in part VLA-4/vascular cell adhe-
sion molecule (VCAM) dependent (15).
MSCs and their hypo-immunogenicity. Because of the
lack in expression of MHC class II and most of the
classical costimulatory molecules on MSCs, these cells

have historically been regarded as hypo-immunogenic
cells (36). MSCs cultured with responder T-cells do not
generally cause T-cell proliferation. However, recent stud-
ies suggest that MSCs are not as immunoprivileged as once
thought (37).

MSCs do in fact have a large number of receptors that
equip them to interact with T-cells. MHC class I and a
variety of adhesion molecules, including cell adhesion
molecule (CD106; VCAM), intercellular adhesion molecule
1 (ICAM-1), activated leukocyte cell adhesion molecule
(CD166; ALCAM), lymphocyte functional antigen-3 (LFA3;
CD58), and many other integrins on MSCs can find their
counterpart ligands on T-cells (15). MHC class II is com-
monly reported to be absent on the surface of MSCs, but
Western blotting on cell lysates has shown that the cells
contain intracellular deposits of class II alloantigens
(38,39). Furthermore, MSCs stimulated by IFN-� exhibit
induction of class II molecule expression (40). Because, in
many inflammatory milieus, IFN-� is upregulated, this may
increase the expression of MHC class II. Although MSCs
may not induce lymphocyte activation, at least as mea-
sured through proliferation, MSCs have been shown to
alter cytokine production (39). Recent studies suggest that
although transplanted allogeneic MSCs can be detected in
recipients for extended periods, they are recognized by the
host immune response and eventually get rejected (15).
Herein, we provide a summary of potential MSC immuno-
modulatory effects and mechanisms (Fig. 1).
MSCs and their immunomodulatory properties in
vivo. Although regenerative capabilities of MSCs have
been a driving force in launching initial studies testing

FIG. 1. Schematic representation of plausible mechanisms by which MSCs regulate immune responses. MSCs might also reduce the generation and
differentiation of dendritic cells (1). MSCs can increase the percentage of regulatory T-cells through production of cytokines imparting
regulation or promoting the generation of regulatory dendritic cells producing IL-10 (2). MSCs may engage in cell-to-cell contact through a
variety of receptors with T-cells and endothelial cells (3,4). In addition, MSCs could suppress effector T-cells through various growth factors,
inducible nitric oxide synthase (iNOS), heme oxygenase (HO)-1, prostaglandin (PG), or indolamine 2,3-dioxygenase (IDO) (5). MSCs may also
act through downregulation of immunoglobulin production by B-cells (6). Finally, upregulation of MHC class II on MSCs could lead to
downregulation of NK cell cytotoxity and proliferation (7). DC, dendritic cells; HGF, hepatic growth factor; TGF, transforming growth factor;
TNF, tumor necrosis factor.
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their therapeutic effectiveness, the immunomodulatory
properties of MSCs have recently become equally exciting
for investigators in terms of examining their potential
implications in a variety of disease models. MSCs have
been tested in rodent animal models to treat diseases
where immunomodulation is thought to be the main
operative mechanism (Table 2). However, it is also impor-
tant to note that even in the studies focusing on the
plasticity of MSCs, the benefit effects observed could also
have been due to the immunomodulatory capacities of
MSCs (41,42).

Notably, the MSC literature is lacking in reports on the
use of MSCs in animal models of diabetes. Lee et al. (59)
used immunodeficient recipient mice (NOD.SCID), chem-
ically rendered diabetic by streptozotocin injections, to
study the effect of human MSCs (hMSCs) in the develop-
ment of diabetes. Infusion of hMSCs reduced glycemic
levels and increased peripheral insulin levels (59). Human
DNA infused as hMSCs was detected in the pancreas as
well as in the kidney (59).

In pancreata from hMSC-treated diabetic mice, the islets
appeared larger compared with islets from untreated
diabetic mice (59). Also, the islets had an increase in
mouse insulin immunoreactivity. Few human cells were
detected in islets of the hMSC-treated diabetic mice by
labeling sections with antibodies to human-2-microglobu-
lin and mouse insulin (59). Kidneys from untreated dia-
betic mice contained many abnormal glomeruli with
increased deposits of extracellular matrix protein in the
mesangium (59), whereas in hMSC-treated diabetic mice,
glomeruli were normal (59).

Among early reports responsible for stirring this interest
was a study by Bartholomew et al. (17) in which the
investigators demonstrated that donor MSC administered
intravenously to MHC-mismatched recipient baboons be-
fore placement of second- and third-party skin grafts led to
prolonged allograft survival. Zappia et al. (43) have also
studied the immunoregulatory ability of murine MSCs to
treat myelin oligodendrocyte glycoprotein–induced exper-
imental autoimmune encephalomyelitis in C57BL/6J mice.
In that effort, MSCs were injected intravenously before
disease onset (i.e., preventative protocol) as well as at
different time points after disease occurrence (i.e., thera-
peutic protocol). MSC administration before disease onset
strikingly ameliorated experimental autoimmune enceph-
alomyelitis, and overall, the therapeutic scheme was effec-
tive when MSCs were administered at disease onset as
well as at the peak of disease, but not during the chronic
phase. The immunoregulatory properties of MSCs inter-
fered effectively with the autoimmune attack in the course
of experimental autoimmune encephalomyelitis, inducing
an in vivo state of T-cell unresponsiveness within second-
ary lymphoid organs. Recently, Augello et al. (44) from our
group demonstrated that allogeneic murine MSCs are able
to prevent tissue damage in collagen-induced arthritis, a
mouse model for human rheumatoid arthritis in DBA-1
mice, and showed that MSCs exert their immunomodula-
tory function by educating antigen-specific regulatory T-
cells. MSCs have also been successfully used in the
treatment of steroid-refractory graft versus host disease
(GVHD) in both experimental animals (45) and in humans
(46,47). Yanez et al. (48) reported the successful control of

TABLE 2
MSC therapy in various disease models in animals

Outcomes Reference

STZ diabetes Human-MSC grafted kidney and pancreas in STZ
NOD.SCID mice ameliorating diabetes and kidney
disease

59

Heart transplantation Allogenic rat-MSCs injected intravenously migrated to
the heart during chronic rejection

60

Heart transplantation Allogenic rat-MSCs co-injected with cyclosporine

accelerate rejection

50

Myocardial infarction Syngeneic rat-MSCs showed an anti-inflammation role
in ischemic heart disease

61

Acute lung injury Syngeneic intrapulmonary murine-MSCs decrease the
severity of endotoxin-induced acute lung injury and
improve survival in mice

62

Chronic lung injury Syngeneic murine-MSCs protect lung tissue from
bleomycin-induced injury with anti-inflammatory
effect

63

Arthritis Allogenic murine-MSCs reduce joint inflammation and
increase Treg generation

44

Kidney ischemia reperfusion injury Syngeneic murine-MSCs are helpful in the restoration of
tubular epithelial cells with an anti-inflammatory
effect

42

Multiple sclerosis model (EAE) Syngeneic murine-MSCs are home to inflamed lymphoid
tissues reducing disease progression

43,64

Acute hepatic failure Human-MSCs protect against hepatocyte death and
increase survival in mice after the injections of the
hepatotoxin D-galactosamine

65

GHVD Allogenic rat-MSCs prevent lethal GVHD 66
GVHD Allogenic murine-MSCs did not improve GVHD 49

BM transplantation Donor-MSCs increase rejection of allogeneic donor

bone marrow cells

37

Italics indicate contrasting reports. MSC were all bone marrow–derived (BM-MSC). EAE, experimental autoimmune encephalomyelitis; STZ,
streptozotocin.
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GVHD in mice but with extraction of murine MSCs from a
different cellular source (i.e., adipose tissue).

While the aforementioned studies certainly provide sup-
port for the therapeutic utility of MSCs, it should also be
noted there has been contradictory data using MSCs as
well. Sudres et al. (49) reported that murine MSCs were
unable to ameliorate the outcome of a GVHD reaction in
mice. Nauta et al. (37) examined the role of recipient and
donor MSC in sublethally irradiated recipients receiving
allogeneic bone marrow. Whereas the host MSCs signifi-
cantly enhanced the long-term engraftment associated
with tolerance to host and donor antigens, the infusion of
donor MSCs significantly increased rejection of allogeneic
bone marrow cells. In heart transplant models in rats,
Inoue et al. (50) have shown that MSC injection not only
failed to prolong allograft survival, but when MSCs were
co-administered with low-dose cyclosporine, it acceler-
ated allograft rejection.
Clinical trials using MSCs in humans. MSCs were first
shown to accelerate the recovery in a patient with a severe
case of GVHD (46). A limited but growing number of
follow-up studies involving MSCs have been reported
since, most aimed at taking advantage of the plasticity of
MSCs to treat a disease. These clinical studies (Table 3)
have demonstrated promising results in treating patients
with cancer, in reducing the incidence of GVHD after bone
marrow transplantation, in promoting heart tissue recov-
ery from massive myocardial infarction, in improving the
recovery of patients after amyotrophic lateral sclerosis,
and in treating fatal disorders such as metachromatic
leukodystrophy and Hurler syndrome (47,51–53). At the
time of this Perspectives in Diabetes article’s submission,
�32 clinical trials involving administration of MSCs were
listed at http://www.ClinicalTrials.gov, each potentially
seeking to exploit the immunomodulatory properties of
MSCs to achieve their desired therapeutic goal. In terms of
type 1 diabetes, the Juvenile Diabetes Research Founda-
tion recently announced its intent to fund the commercial
entity Osiris to evaluate the immunomodulatory effects of
Prochymal, a formulation of immunomodulatory adult
bone marrow–derived MSCs, for the purpose of improving
disease management in individuals with type 1 diabetes.

FUTURE CHALLENGES FOR MSC TRIALS

While MSC-based cell therapy is clearly promising and has
been used in multiple disease scenarios with no unfore-
seen events (at least to date), whether any long-term
complications arise from this strategy remains uncertain.
As a result, many of the clinical trials are placing a high
emphasis on addressing issues related to the safety of
MSCs. Thus, MSC-based cell therapy still faces many
hurdles, in particular addressing the safety issues, before
widespread clinical applicability becomes feasible. In ad-

dition to the general challenges any cell-based therapy
face, there are additional issues specific to MSCs (Table 4),
especially in the context of type 1 diabetes.
Standardization and quality-control studies of MSCs.

Similar to stem cells, MSC characteristics and phenotype
vary according to the passage cycle, culture conditions,
and source of the MSCs (e.g., bone marrow, blood, cord
blood, etc.). This could explain the differential outcome
data that have been noted by investigators using their
particular model of interest. Thus, there is a strong need to
define these conditions as the field of MSC-based therapies
moves forward.

In particular, a major safety issue of note is the need for
fetal calf serum (FCS) to maintain MSC culture. Because
FCS has been associated with transmission of diseases or
undesirable immune responses to it, studies to develop
and measure the safety of FCS-free culture medium are
necessary. Furthermore, there is a need to define a dose
range for cells and protocol of administration that result in
optimal efficacy. This is particularly relevant to type 1
diabetes where, as will be discussed below, a potential
exists to identify patients at increased risk for the disease
and thereby allow for the development of prevention
strategies; this is in addition to therapeutic protocols
seeking to reverse the disorder in patients shortly after
disease onset. Finally, development of refined immuno-
logic and molecular assays capable of monitoring thera-
peutic efficacy must go hand in hand with planning of
initial trials to make this form of therapy widely available
for clinical application.
Potential tumorogenicity of MSCs. Although malignant
transformation of MSCs has not been noted to date in the
clinical trials using human MSCs, expansion in vitro for
extended periods of time can confer risk of chromosomal
instability and malignant transformation (54). It is also
possible that the tendency for MSCs to undergo malignant
transformation could vary according to the species (i.e.,
human vs. mice), source (i.e., adipose tissue vs. bone
marrow), preparation, and cell cycle at the time of use.
Therefore, MSCs maintained in a prolonged culture may
not be risk free. Therefore, a greater understanding of
MSC biology is needed to establish safe criteria for their
use.
Differentiation of MSCs to unwanted tissues. The
potential for MSCs to differentiate into other mesenchymal
lineages (e.g., bone) could also be problematic, as was
observed in the case calling for replacement of cardiac
tissues (55). As noted, transformation of transplanted
bone marrow material into mesodermal tissues has long
been recognized (2). This is clearly an issue when MSCs
are locally administered. Efforts are taken to prevent this
unwanted transdifferentiation by in vivo and ex vivo
stimulation of MSCs with a variety of factors (56). In the

TABLE 4
Potential risks using MSCs

Safety profiling Consideration

Cytogenetic instability of MSCs per SE and support of
tumor growth

Does auto-MSC pose equal risk as allo-MSC?

Ectopic MSC differentiation Local vs. systemic administration?
Fetal calf serum response Use of cocktails of growth factors or platelet lysate?
Effect of inflammatory molecules released from MSC Could rejected allogeneic MSC cause systemic reactions?
Cell product purification Highly pure vs. mixed population?
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case of systemic administration of MSC for treating auto-
immunity, it is interesting to examine the value of manip-
ulating MSCs before administration to enhance their
immunomodulatory function, which could be tested in the
appropriate in vitro assays. It is of value to test the idea of
directing MSCs to specific lymphoid tissues where they
could exert their immunomodulatory function locally
where all actions take place. Therefore, there is a need for
better understanding of the roles of factors that could
determine their fate post-delivery.

MSCs FOR THE TREATMENT OF TYPE 1 DIABETES

Why MSCs? Despite the efforts of many, the frequency of
type 1 diabetes has been steadily increasing worldwide.
When taken together with the costs (both fiscal and
physical) associated with the treatment of its complica-
tions, a setting has been formed where research on this
disease has become priority for the field of autoimmunity.
Here, the challenge involves the development of safe and
effective means affording the prevention or reversal of
type 1 diabetes. This would represent a remarkable ac-
complishment, especially when one considers that type 1
diabetes prevention studies using immunosuppressants,
self-antigens, and dietary interventions (among others)
have thus far demonstrated largely disappointing results
(57). Indeed, even if efforts involving the aforementioned
immunosuppressive agents were, over time, proven effec-
tive, the high morbidity associated with lifelong immuno-
suppression would remain a major limitation. As such, we
and others have sought to search for other preventative
measures, including MSCs. The logical question and close
for this article would be to address the practical issue
(with respect to MSC therapy) of why one would consider
MSCs as an immune intervention for type 1 diabetes.

First, the immunological properties associated with
MSCs would appear to target facets thought pathogenic
for type 1 diabetes. In NOD mice, it appears that several
defects in maintaining peripheral and central tolerance
lead to development of autoimmune diabetes. A combi-
nation of immune cell dysfunction (including T-cell, NK
cells, B-cells, and dendritic cells), as well as the pres-
ence of inflammatory cytokine milieu in a coordinated
fashion, leads to this failure to maintain tolerance to
�-cells (58). Furthermore, as detailed earlier in this
article, MSCs possess specific immunomodulatory prop-
erties that (based on our collective knowledge of the

pathogenic factors that lead to �-cell destruction in type
1 diabetes) would appear capable of disabling autoim-
munity through immunomodulation. One could specu-
late that MSCs could regulate diabetes through a direct
effect by presenting differential levels of negative co-
stimulatory molecules and secreting regulatory cyto-
kines such as transforming growth factor-� and IL-10
that control regulatory T-cells/autoreactive T-cells. It is
also possible that MSCs could correct the dysregulation
observed at the level of B-cells and NK cells as well.
Dendritic cells have been shown to be defective in NOD
mice having a higher level of costimulation and having
capability to shift to a Th1 type of immune response.
Given the data showing interaction of MSCs with den-
dritic cells resulting in formation of regulatory dendritic
cells, we also propose that MSCs could regulate type 1
diabetes through an indirect effect by regulating den-
dritic cell function. MSCs also exert anti-inflammatory
effects that could be important in maintaining periph-
eral tolerance. Beyond this, there is the important issue
of safety. While type 1 diabetes can develop in individ-
uals at any age, it remains a disease wherein a majority
of subjects are children and adolescents, individuals for
whom safe interventions should be given primary con-
sideration. This notion would be even more important
were this form of therapeutic intervention applied to
disease prevention in individuals considered at in-
creased risk for type 1 diabetes (i.e., those with genetic
susceptibility, autoantibodies). Finally, as discussed
previously, MSCs have shown promising results in the
treatment of other autoimmune disorders (e.g., experi-
mental autoimmune encephalomyelitis and rheumatoid
arthritis).

In summary, although the immunomodulatory effects of
MSCs make them particularly interesting candidates for
the treatment of this disease, future studies should evalu-
ate the effect of MSCs on the prevention of and cure for
type 1 diabetes through their immunomodulatory effects
by examining mechanistic bases for this phenomenon first
in mice and then in pilot human studies (Table 5). How-
ever, to date, the role of MSCs in type 1 diabetes remains
completely unexplored. We are optimistic that future
efforts in this area will shed light on the functions of MSCs
as immunomodulators of the autoimmune response, pro-
viding a proof of principle to translate to clinical trials in
humans.

TABLE 5
Recommended studies to address the potential implications of MSC therapy for type 1 diabetes

Animal study designs specific to type 1 diabetes Goal

Source of MSC To elucidate the differential immunomodulatory properties of
bone marrow, blood, and cord blood MSC

Documentation of MSC engraftment To study the life span of MSC after systemic administration
Homing of MSC to appropriate environment To anatomically localize MSC in lymphoid tissues and

pancreas and determine their potential differentiation into
islets

Autologous vs. allogeneic MSC To study differential anti-diabetes influence of MSC from
NOD, NOR and allogeneic MSC

MSC passage, cell infusion number, frequency, duration,
concurrent immunosuppression, and pre-injection
manipulation of MSC

To optimize the therapy

Monitoring of a therapeutic response To develop specific in vitro assays to measure MSC
anti-autoimmune properties
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