2,709 research outputs found

    Mott insulator to superfluid transition in the Bose-Hubbard model: a strong-coupling approach

    Get PDF
    We present a strong-coupling expansion of the Bose-Hubbard model which describes both the superfluid and the Mott phases of ultracold bosonic atoms in an optical lattice. By performing two successive Hubbard-Stratonovich transformations of the intersite hopping term, we derive an effective action which provides a suitable starting point to study the strong-coupling limit of the Bose-Hubbard model. This action can be analyzed by taking into account Gaussian fluctuations about the mean-field approximation as in the Bogoliubov theory of the weakly interacting Bose gas. In the Mott phase, we reproduce results of previous mean-field theories and also calculate the momentum distribution function. In the superfluid phase, we find a gapless spectrum and compare our results with the Bogoliubov theory.Comment: 8 pages, 6 figures; (v2) Two references adde

    Genome-Wide Association to Body Mass Index and Waist Circumference: The Framingham Heart Study 100K Project

    Get PDF
    BACKGROUND: Obesity is related to multiple cardiovascular disease (CVD) risk factors as well as CVD and has a strong familial component. We tested for association between SNPs on the Affymetrix 100K SNP GeneChip and measures of adiposity in the Framingham Heart Study. METHODS: A total of 1341 Framingham Heart Study participants in 310 families genotyped with the Affymetrix 100K SNP GeneChip had adiposity traits measured over 30 years of follow up. Body mass index (BMI), waist circumference (WC), weight change, height, and radiographic measures of adiposity (subcutaneous adipose tissue, visceral adipose tissue, waist circumference, sagittal height) were measured at multiple examination cycles. Multivariable-adjusted residuals, adjusting for age, age-squared, sex, smoking, and menopausal status, were evaluated in association with the genotype data using additive Generalized Estimating Equations (GEE) and Family Based Association Test (FBAT) models. We prioritized mean BMI over offspring examinations (1–7) and cohort examinations (10, 16, 18, 20, 22, 24, 26) and mean WC over offspring examinations (4–7) for presentation. We evaluated associations with 70,987 SNPs on autosomes with minor allele frequencies of at least 0.10, Hardy-Weinberg equilibrium p ≥ 0.001, and call rates of at least 80%. RESULTS: The top SNPs to be associated with mean BMI and mean WC by GEE were rs110683 (p-value 1.22*10-7) and rs4471028 (p-values 1.96*10-7). Please see for the complete set of results. We were able to validate SNPs in known genes that have been related to BMI or other adiposity traits, including the ESR1 Xba1 SNP, PPARG, and ADIPOQ. CONCLUSION: Adiposity traits are associated with SNPs on the Affymetrix 100K SNP GeneChip. Replication of these initial findings is necessary. These data will serve as a resource for replication as more genes become identified with BMI and WC.National Heart, Lung, and Blood Institute's Framingham Heart Study (N01-HC-25195); Atwood (R01 DK066241); National Institutes of Health National Center for Research Resources Shared Instrumentation grant (1S10RR163736-01A1

    A strong-coupling expansion for the Hubbard model

    Full text link
    We reconsider the strong-coupling expansion for the Hubbard model recently introduced by Sarker and Pairault {\it et al.} By introducing slave particles that act as projection operators onto the empty, singly occupied and doubly occupied atomic states, the perturbation theory around the atomic limit distinguishes between processes that do conserve or do not conserve the total number of doubly occupied sites. This allows for a systematic t/Ut/U expansion that does not break down at low temperature (tt being the intersite hopping amplitude and UU the local Coulomb repulsion). The fermionic field becomes a two-component field, which reflects the presence of the two Hubbard bands. The single-particle propagator is naturally expressed as a function of a 2Ă—22 \times 2 matrix self-energy. Furthermore, by introducing a time- and space-fluctuating spin-quantization axis in the functional integral, we can expand around a ``non-degenerate'' ground-state where each singly occupied site has a well defined spin direction (which may fluctuate in time). This formalism is used to derive the effective action of charge carriers in the lower Hubbard band to first order in t/Ut/U. We recover the action of the t-J model in the spin-hole coherent-state path integral. We also compare our results with those previously obtained by studying fluctuations around the large-UU Hartree-Fock saddle point.Comment: 20 pages RevTex, 3 figure

    Adjuvant formulation for veterinary vaccines: Montanide™ Gel safety profile

    Get PDF
    AbstractSelecting the adjuvant is one of the key for the success of the vaccine in the field. Selecting a flexible adjuvant that will fit with several vaccines dedicated to one or more animal species is a source of economical efficiency. Frequently the safety or efficacy obtained with one model is different from another: there are few adjuvants fitting with the expectation of more than one animal species. Montanide™ Gel an innovative polymeric adjuvant have been tested in several animals. Our studies demonstrated the ability to use this adjuvant in dogs, cattle and pig vaccines. Three trials were performed to validate Montanide™ Gel ability to be used in cattle, pigs and dogs. Respectively, vaccines were formulated with ovalbumin in cattle, Pasteurella Multocida anatoxin and Bordetella bronchiseptica cell walls for pig and finally with parvovirus associated to two leptospira valence for dog model. All antigenic media used in the three trials were inactivated. In all trial, safety was followed through behaviour and temperature measurement as well as histology studies.Montanide™ Gel adjuvant can be used associated with a wide range of antigenic media. Nevertheless, the uses of such adjuvant need validation in avian and fish vaccines

    Mixture of Kernels and Iterated Semidirect Product of Diffeomorphisms Groups

    Full text link
    In the framework of large deformation diffeomorphic metric mapping (LDDMM), we develop a multi-scale theory for the diffeomorphism group based on previous works. The purpose of the paper is (1) to develop in details a variational approach for multi-scale analysis of diffeomorphisms, (2) to generalise to several scales the semidirect product representation and (3) to illustrate the resulting diffeomorphic decomposition on synthetic and real images. We also show that the approaches presented in other papers and the mixture of kernels are equivalent.Comment: 21 pages, revised version without section on evaluatio

    Robust Estimators in Generalized Pareto Models

    Full text link
    This paper deals with optimally-robust parameter estimation in generalized Pareto distributions (GPDs). These arise naturally in many situations where one is interested in the behavior of extreme events as motivated by the Pickands-Balkema-de Haan extreme value theorem (PBHT). The application we have in mind is calculation of the regulatory capital required by Basel II for a bank to cover operational risk. In this context the tail behavior of the underlying distribution is crucial. This is where extreme value theory enters, suggesting to estimate these high quantiles parameterically using, e.g. GPDs. Robust statistics in this context offers procedures bounding the influence of single observations, so provides reliable inference in the presence of moderate deviations from the distributional model assumptions, respectively from the mechanisms underlying the PBHT.Comment: 26pages, 6 figure

    Holomorphic Simplicity Constraints for 4d Spinfoam Models

    Full text link
    Within the framework of spinfoam models, we revisit the simplicity constraints reducing topological BF theory to 4d Riemannian gravity. We use the reformulation of SU(2) intertwiners and spin networks in term of spinors, which has come out from both the recently developed U(N) framework for SU(2) intertwiners and the twisted geometry approach to spin networks and spinfoam boundary states. Using these tools, we are able to perform a holomorphic/anti-holomorphic splitting of the simplicity constraints and define a new set of holomorphic simplicity constraints, which are equivalent to the standard ones at the classical level and which can be imposed strongly on intertwiners at the quantum level. We then show how to solve these new holomorphic simplicity constraints using coherent intertwiner states. We further define the corresponding coherent spin network functionals and introduce a new spinfoam model for 4d Riemannian gravity based on these holomorphic simplicity constraints and whose amplitudes are defined from the evaluation of the new coherent spin networks.Comment: 27 page

    Triplet superconducting pairing and density-wave instabilities in organic conductors

    Full text link
    Using a renormalization group approach, we determine the phase diagram of an extended quasi-one-dimensional electron gas model that includes interchain hopping, nesting deviations and both intrachain and interchain repulsive interactions. We find a close proximity of spin-density- and charge-density-wave phases, singlet d-wave and triplet f-wave superconducting phases. There is a striking correspondence between our results and recent puzzling experimental findings in the Bechgaard salts, including the coexistence of spin-density-wave and charge-density-wave phases and the possibility of a triplet pairing in the superconducting phase.Comment: 4 pages, 5 eps figure

    Collective modes in a system with two spin-density waves: the `Ribault' phase of quasi-one-dimensional organic conductors

    Full text link
    We study the long-wavelength collective modes in the magnetic-field-induced spin-density-wave (FISDW) phases experimentally observed in organic conductors of the Bechgaard salts family, focusing on phases that exhibit a sign reversal of the quantum Hall effect (Ribault anomaly). We have recently proposed that two SDW's coexist in the Ribault phase, as a result of Umklapp processes. When the latter are strong enough, the two SDW's become circularly polarized (helicoidal SDW's). In this paper, we study the collective modes which result from the presence of two SDW's. We find two Goldstone modes, an out-of-phase sliding mode and an in-phase spin-wave mode, and two gapped modes. The sliding Goldstone mode carries only a fraction of the total optical spectral weight, which is determined by the ratio of the amplitude of the two SDW's. In the helicoidal phase, all the spectral weight is pushed up above the SDW gap. We also point out similarities with phase modes in two-band or bilayer superconductors. We expect our conclusions to hold for generic two-SDW systems.Comment: Revised version, 25 pages, RevTex, 7 figure
    • …
    corecore