131 research outputs found

    APOGEE Kinematics I: Overview of the Kinematics of the Galactic Bulge as Mapped by APOGEE

    Full text link
    We present the stellar kinematics across the Galactic bulge and into the disk at positive longitudes from the SDSS-III APOGEE spectroscopic survey of the Milky Way. APOGEE includes extensive coverage of the stellar populations of the bulge along the mid-plane and near-plane regions. From these data, we have produced kinematic maps of 10,000 stars across longitudes 0 deg < l < 65 deg, and primarily across latitudes of |b| < 5 deg in the bulge region. The APOGEE data reveal that the bulge is cylindrically rotating across all latitudes and is kinematically hottest at the very centre of the bulge, with the smallest gradients in both kinematic and chemical space inside the inner-most region (l,|b|) < (5,5) deg. The results from APOGEE show good agreement with data from other surveys at higher latitudes and a remarkable similarity to the rotation and dispersion maps of barred galaxies viewed edge on. The thin bar that is reported to be present in the inner disk within a narrow latitude range of |b| < 2 deg appears to have a corresponding signature in [Fe/H] and [alpha/Fe]. Stars with [Fe/H] > -0.5 have dispersion and rotation profiles that are similar to that of N-body models of boxy/peanut bulges. There is a smooth kinematic transition from the thin bar and boxy bulge (l,|b|) < (15,12) deg out into the disk for stars with [Fe/H] > -1.0, and the chemodynamics across (l,b) suggests the stars in the inner Galaxy with [Fe/H] > -1.0 have an origin in the disk.Comment: Accepted by ApJ 15 December 201

    The Sloan Digital Sky Survey Reverberation Mapping Project : systematic investigations of short-timescale CIV broad absorption line variability

    Get PDF
    We systematically investigate short-timescale (<10-day rest-frame) Civ broad absorption-line (BAL) variability to constrain quasar-wind properties and provide insights into BAL-variability mechanisms in quasars. We employ data taken by the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project, as the rapid cadence of these observations provides a novel opportunity to probe BAL variability on shorter rest-frame timescales than have previously been explored. In a sample of 27 quasars with a median of 58 spectral epochs per quasar, we have identified 15 quasars (55+18−14%), 19 of37 Civ BAL troughs (51+15−12%), and 54 of 1460 epoch pairs (3.7±0.5%) that exhibit significant CivBAL equivalent-width variability on timescales of less than 10 days in the quasar rest frame. These frequencies indicate that such variability is common among quasars and BALs, though somewhat rare among epoch pairs. Thus, models describing BALs and their behavior must account for variability on timescales down to less than a day in the quasar rest frame. We also examine a variety of spectral characteristics and find that in some cases, BAL variability is best described by ionization-state changes, while other cases are more consistent with changes in covering fraction or column density. We adopt a simple model to constrain the density and radial distance of two outflows appearing to vary by ionization-state changes, yielding outflow density lower limits consistent with previous work.PostprintPeer reviewe

    2006 SQ372: A Likely Long-Period Comet from the Inner Oort Cloud

    Full text link
    We report the discovery of a minor planet (2006 SQ372) on an orbit with a perihelion of 24 AU and a semimajor axis of 796 AU. Dynamical simulations show that this is a transient orbit and is unstable on a timescale of 200 Myrs. Falling near the upper semimajor axis range of the scattered disk and the lower semimajor axis range of the Oort Cloud, previous membership in either class is possible. By modeling the production of similar orbits from the Oort Cloud as well as from the scattered disk, we find that the Oort Cloud produces 16 times as many objects on SQ372-like orbits as the scattered disk. Given this result, we believe this to be the most distant long-period comet ever discovered. Furthermore, our simulation results also indicate that 2000 OO67 has had a similar dynamical history. Unaffected by the "Jupiter-Saturn Barrier," these two objects are most likely long-period comets from the inner Oort Cloud

    SDSS-III Baryon Oscillation Spectroscopic Survey data release 12 : galaxy target selection and large-scale structure catalogues

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets for which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large-scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. The code used, designated mksample, is released with this paper.Publisher PDFPeer reviewe

    High-resolution, H band Spectroscopy of Be Stars with SDSS-III/APOGEE: I. New Be Stars, Line Identifications, and Line Profiles

    Get PDF
    APOGEE has amassed the largest ever collection of multi-epoch, high-resolution (R~22,500), H-band spectra for B-type emission line (Be) stars. The 128/238 APOGEE Be stars for which emission had never previously been reported serve to increase the total number of known Be stars by ~6%. We focus on identification of the H-band lines and analysis of the emission peak velocity separations (v_p) and emission peak intensity ratios (V/R) of the usually double-peaked H I and non-hydrogen emission lines. H I Br11 emission is found to preferentially form in the circumstellar disks at an average distance of ~2.2 stellar radii. Increasing v_p toward the weaker Br12--Br20 lines suggests these lines are formed interior to Br11. By contrast, the observed IR Fe II emission lines present evidence of having significantly larger formation radii; distinctive phase lags between IR Fe II and H I Brackett emission lines further supports that these species arise from different radii in Be disks. Several emission lines have been identified for the first time including ~16895, a prominent feature in the spectra for almost a fifth of the sample and, as inferred from relatively large v_p compared to the Br11-Br20, a tracer of the inner regions of Be disks. Unlike the typical metallic lines observed for Be stars in the optical, the H-band metallic lines, such as Fe II 16878, never exhibit any evidence of shell absorption, even when the H I lines are clearly shell-dominated. The first known example of a quasi-triple-peaked Br11 line profile is reported for HD 253659, one of several stars exhibiting intra- and/or extra-species V/R and radial velocity variation within individual spectra. Br11 profiles are presented for all discussed stars, as are full APOGEE spectra for a portion of the sample.Comment: accepted in A

    The Apache Point Observatory Galactic Evolution Experiment: First Detection of High Velocity Milky Way Bar Stars

    Full text link
    Commissioning observations with the Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the Sloan Digital Sky Survey III, have produced radial velocities (RVs) for ~4700 K/M-giant stars in the Milky Way bulge. These high-resolution (R \sim 22,500), high-S/N (>100 per resolution element), near-infrared (1.51-1.70 um; NIR) spectra provide accurate RVs (epsilon_v~0.2 km/s) for the sample of stars in 18 Galactic bulge fields spanning -1-32 deg. This represents the largest NIR high-resolution spectroscopic sample of giant stars ever assembled in this region of the Galaxy. A cold (sigma_v~30 km/s), high-velocity peak (V_GSR \sim +200 km/s) is found to comprise a significant fraction (~10%) of stars in many of these fields. These high RVs have not been detected in previous MW surveys and are not expected for a simple, circularly rotating disk. Preliminary distance estimates rule out an origin from the background Sagittarius tidal stream or a new stream in the MW disk. Comparison to various Galactic models suggests that these high RVs are best explained by stars in orbits of the Galactic bar potential, although some observational features remain unexplained.Comment: 7 pages, 4 figures, accepted for publication in ApJ Letter

    The Sloan Digital Sky Survey Reverberation Mapping Project: Technical Overview

    Full text link
    The Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM) is a dedicated multi-object RM experiment that has spectroscopically monitored a sample of 849 broad-line quasars in a single 7 deg2^2 field with the SDSS-III BOSS spectrograph. The RM quasar sample is flux-limited to i_psf=21.7 mag, and covers a redshift range of 0.1<z<4.5. Optical spectroscopy was performed during 2014 Jan-Jul dark/grey time, with an average cadence of ~4 days, totaling more than 30 epochs. Supporting photometric monitoring in the g and i bands was conducted at multiple facilities including the CFHT and the Steward Observatory Bok telescopes in 2014, with a cadence of ~2 days and covering all lunar phases. The RM field (RA, DEC=14:14:49.00, +53:05:00.0) lies within the CFHT-LS W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07, with three prior years of multi-band PS1 light curves. The SDSS-RM 6-month baseline program aims to detect time lags between the quasar continuum and broad line region (BLR) variability on timescales of up to several months (in the observed frame) for ~10% of the sample, and to anchor the time baseline for continued monitoring in the future to detect lags on longer timescales and at higher redshift. SDSS-RM is the first major program to systematically explore the potential of RM for broad-line quasars at z>0.3, and will investigate the prospects of RM with all major broad lines covered in optical spectroscopy. SDSS-RM will provide guidance on future multi-object RM campaigns on larger scales, and is aiming to deliver more than tens of BLR lag detections for a homogeneous sample of quasars. We describe the motivation, design and implementation of this program, and outline the science impact expected from the resulting data for RM and general quasar science.Comment: 25 pages, submitted to ApJS; project website at http://www.sdssrm.or

    Very Low Mass Stellar and Substellar Companions to Solar-Like Stars From MARVELS V: A Low Eccentricity Brown Dwarf from the Driest Part of the Desert, MARVELS-6b

    Get PDF
    We describe the discovery of a likely brown dwarf (BD) companion with a minimum mass of 31.7 +/- 2.0 M_Jup to GSC 03546-01452 from the MARVELS radial velocity survey, which we designate as MARVELS-6b. For reasonable priors, our analysis gives a probability of 72% that MARVELS-6b has a mass below the hydrogen-burning limit of 0.072 M_Sun, and thus it is a high-confidence BD companion. It has a moderately long orbital period of 47.8929 +0.0063/-0.0062 days with a low eccentricty of 0.1442 +0.0078/-0.0073, and a semi-amplitude of 1644 +12/-13 m/s. Moderate resolution spectroscopy of the host star has determined the following parameters: T_eff = 5598 +/- 63, log g = 4.44 +/- 0.17, and [Fe/H] = +0.40 +/- 0.09. Based upon these measurements, GSC 03546-01452 has a probable mass and radius of M_star = 1.11 +/- 0.11 M_Sun and R_star = 1.06 +/- 0.23 R_Sun with an age consistent with less than ~6 Gyr at a distance of 219 +/- 21 pc from the Sun. Although MARVELS-6b is not observed to transit, we cannot definitively rule out a transiting configuration based on our observations. There is a visual companion detected with Lucky Imaging at 7.7 arcsec from the host star, but our analysis shows that it is not bound to this system. The minimum mass of MARVELS-6b exists at the minimum of the mass functions for both stars and planets, making this a rare object even compared to other BDs.Comment: 15 pages, 15 figures, 5 tables. Accepted for publication in The Astronomical Journa
    corecore