153 research outputs found

    Comparing language outcomes in monolingual and bilingual stroke patients.

    Get PDF
    Post-stroke prognoses are usually inductive, generalizing trends learned from one group of patients, whose outcomes are known, to make predictions for new patients. Research into the recovery of language function is almost exclusively focused on monolingual stroke patients, but bilingualism is the norm in many parts of the world. If bilingual language recruits qualitatively different networks in the brain, prognostic models developed for monolinguals might not generalize well to bilingual stroke patients. Here, we sought to establish how applicable post-stroke prognostic models, trained with monolingual patient data, are to bilingual stroke patients who had been ordinarily resident in the UK for many years. We used an algorithm to extract binary lesion images for each stroke patient, and assessed their language with a standard tool. We used feature selection and cross-validation to find 'good' prognostic models for each of 22 different language skills, using monolingual data only (174 patients; 112 males and 62 females; age at stroke: mean = 53.0 years, standard deviation = 12.2 years, range = 17.2-80.1 years; time post-stroke: mean = 55.6 months, standard deviation = 62.6 months, range = 3.1-431.9 months), then made predictions for both monolinguals and bilinguals (33 patients; 18 males and 15 females; age at stroke: mean = 49.0 years, standard deviation = 13.2 years, range = 23.1-77.0 years; time post-stroke: mean = 49.2 months, standard deviation = 55.8 months, range = 3.9-219.9 months) separately, after training with monolingual data only. We measured group differences by comparing prediction error distributions, and used a Bayesian test to search for group differences in terms of lesion-deficit associations in the brain. Our models distinguish better outcomes from worse outcomes equally well within each group, but tended to be over-optimistic when predicting bilingual language outcomes: our bilingual patients tended to have poorer language skills than expected, based on trends learned from monolingual data alone, and this was significant (P < 0.05, corrected for multiple comparisons) in 13/22 language tasks. Both patient groups appeared to be sensitive to damage in the same sets of regions, though the bilinguals were more sensitive than the monolinguals. media-1vid1 10.1093/brain/awv020_video_abstract awv020_video_abstract

    Avoiding Dangerous Missense: Thermophiles Display Especially Low Mutation Rates

    Get PDF
    Rates of spontaneous mutation have been estimated under optimal growth conditions for a variety of DNA-based microbes, including viruses, bacteria, and eukaryotes. When expressed as genomic mutation rates, most of the values were in the vicinity of 0.003–0.004 with a range of less than two-fold. Because the genome sizes varied by roughly 104-fold, the mutation rates per average base pair varied inversely by a similar factor. Even though the commonality of the observed genomic rates remains unexplained, it implies that mutation rates in unstressed microbes reach values that can be finely tuned by evolution. An insight originating in the 1920s and maturing in the 1960s proposed that the genomic mutation rate would reflect a balance between the deleterious effect of the average mutation and the cost of further reducing the mutation rate. If this view is correct, then increasing the deleterious impact of the average mutation should be countered by reducing the genomic mutation rate. It is a common observation that many neutral or nearly neutral mutations become strongly deleterious at higher temperatures, in which case they are called temperature-sensitive mutations. Recently, the kinds and rates of spontaneous mutations were described for two microbial thermophiles, a bacterium and an archaeon. Using an updated method to extrapolate from mutation-reporter genes to whole genomes reveals that the rate of base substitutions is substantially lower in these two thermophiles than in mesophiles. This result provides the first experimental support for the concept of an evolved balance between the total genomic impact of mutations and the cost of further reducing the basal mutation rate

    Inducible and constitutive promoters for genetic systems in Sulfolobus acidocaldarius

    Get PDF
    Central to genetic work in any organism are the availability of a range of inducible and constitutive promoters. In this work we studied several promoters for use in the hyperthermophilic archaeon Sulfolobus acidocaldarius. The promoters were tested with the aid of an E. coli–Sulfolobus shuttle vector in reporter gene experiments. As the most suitable inducible promoter a maltose inducible promoter was identified. It comprises 266 bp of the sequence upstream of the gene coding for the maltose/maltotriose binding protein (mbp, Saci_1165). Induction is feasible with either maltose or dextrin at concentrations of 0.2–0.4%. The highest increase in expression (up to 17-fold) was observed in late exponential and stationary phase around 30–50 h after addition of dextrin. Whereas in the presence of glucose and xylose higher basal activity and reduced inducibility with maltose is observed, sucrose can be used in the growth medium additionally without affecting the basal activity or the inducibility. The minimal promoter region necessary could be narrowed down to 169 bp of the upstream sequence. The ABCE1 protein from S. solfataricus was successfully expressed under control of the inducible promoter with the shuttle vector pC and purified from the S. acidocaldarius culture with a yield of about 1 mg L−1 culture. In addition we also determined the promoter strength of several constitutive promoters

    Cytokine responses to Schistosoma haematobium in a Zimbabwean population: contrasting profiles for IFN-γ, IL-4, IL-5 and IL-10 with age

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rate of development of parasite-specific immune responses can be studied by following their age profiles in exposed and infected hosts. This study determined the cytokine-age profiles of Zimbabweans resident in a <it>Schistosoma haematobium </it>endemic area and further investigated the relationship between the cytokine responses and infection intensity.</p> <p>Methods</p> <p>Schistosome adult worm antigen-specific IFN-γ, IL-4, IL-5 and IL-10 cytokine responses elicited from whole blood cultures were studied in 190 Zimbabweans exposed to <it>S. haematobium </it>infection (aged 6 to 40 years old). The cytokines were measured using capture ELISAs and the data thus obtained together with <it>S. haematobium </it>egg count data from urine assays were analysed using a combination of parametric and nonparametric statistical approaches.</p> <p>Results</p> <p>Age profiles of schistosome infection in the study population showed that infection rose to peak in childhood (11–12 years) followed by a sharp decline in infection intensity while prevalence fell more gradually. Mean infection intensity was 37 eggs/10 ml urine (SE 6.19 eggs/10 ml urine) while infection prevalence was 54.7%. Measurements of parasite-specific cytokine responses showed that IL-4, IL-5 and IL-10 but not IFN-γ followed distinct age-profiles. Parasite-specific IL-10 production developed early, peaking in the youngest age group and declining thereafter; while IL-4 and IL-5 responses were slower to develop with a later peak. High IL-10 producers were likely to be egg positive with IL-10 production increasing with increasing infection intensity. Furthermore people producing high levels of IL-10 produced little or no IL-5, suggesting that IL-10 may be involved in the regulation of IL-5 levels. IL-4 and IFN-γ did not show a significant relationship with infection status or intensity and were positively associated with each other.</p> <p>Conclusion</p> <p>Taken together, these results show that the IL-10 responses develop early compared to the IL-5 response and may be down-modulating immunopathological responses that occur during the early phase of infection. The results further support current suggestions that the Th1/Th2 dichotomy does not sufficiently explain susceptibility or resistance to schistosome infection.</p

    Effect of ploidy, recruitment, environmental factors, and tamoxifen treatment on the expression of sigma-2 receptors in proliferating and quiescent tumour cells

    Get PDF
    Recently, we demonstrated that sigma-2 receptors may have the potential to be a biomarker of tumour cell proliferation (Mach et al (1997) Cancer Res57: 156–161). If sigma-2 receptors were a biomarker of tumour cell proliferation, they would be amenable to detection by non-invasive imaging procedures, thus eliminating many of the problems associated with the flow cytometric measures of tumour cell proliferation presently used in the clinic. To be a good biomarker of tumour cell proliferation, the expression of sigma-2 receptors must be essentially independent of many of the biological, physiological, and/or environmental properties that are found in solid tumours. In the investigation reported here, the mouse mammary adenocarcinoma lines, 66 (diploid) and 67 (aneuploid), 9L rat brain tumour cells, and MCF-7 human breast tumour cells were used to study the extent and kinetics of expression of sigma-2 receptors in proliferative (P) and quiescent (Q) tumour cells as a function of species, cell type, ploidy, pH, nutrient depletion, metabolic state, recruitment from the Q-cell compartment to the P-cell compartment, and treatment with tamoxifen. In these experiments, the expression of sigma-2 receptors solely reflected the proliferative status of the tumour cells. None of the biological, physiological, or environmental properties that were investigated had a measurable effect on the expression of sigma-2 receptors in these model systems. Consequently, these data suggest that the proliferative status of tumours and normal tissues can be non-invasively assessed using radiolabelled ligands that selectively bind sigma-2 receptors. © 1999 Cancer Research Campaig

    Experimental Microbial Evolution of Extremophiles

    Get PDF
    Experimental microbial evolutions (EME) involves studying closely a microbial population after it has been through a large number of generations under controlled conditions (Kussell 2013). Adaptive laboratory evolution (ALE) selects for fitness under experimentally imposed conditions (Bennett and Hughes 2009; Dragosits and Mattanovich 2013). However, experimental evolution studies focusing on the contributions of genetic drift and natural mutation rates to evolution are conducted under non-selective conditions to avoid changes imposed by selection (Hindré et al. 2012). To understand the application of experimental evolutionary methods to extremophiles it is essential to consider the recent growth in this field over the last decade using model non-extremophilic microorganisms. This growth reflects both a greater appreciation of the power of experimental evolution for testing evolutionary hypotheses and, especially recently, the new power of genomic methods for analyzing changes in experimentally evolved lineages. Since many crucial processes are driven by microorganisms in nature, it is essential to understand and appreciate how microbial communities function, particularly with relevance to selection. However, many theories developed to understand microbial ecological patterns focus on the distribution and the structure of diversity within a microbial population comprised of single species (Prosser et al. 2007). Therefore an understanding of the concept of species is needed. A common definition of species using a genetic concept is a group of interbreeding individuals that is isolated from other such groups by barriers of recombination (Prosser et al. 2007). An alternative ecological species concept defines a species as set of individuals that can be considered identical in all relevant ecological traits (Cohan 2001). This is particularly important because of the abundance and deep phylogenetic complexity of microbial communities. Cohan postulated that “bacteria occupy discrete niches and that periodic selection will purge genetic variation within each niche without preventing divergence between the inhabitants of different niches”. The importance of gene exchange mechanisms likely in bacteria and archaea and therefore extremophiles, arises from the fact that their genomes are divided into two distinct parts, the core genome and the accessory genome (Cohan 2001). The core genome consists of genes that are crucial for the functioning of an organism and the accessory genome consists of genes that are capable of adapting to the changing ecosystem through gain and loss of function. Strains that belong to the same species can differ in the composition of accessory genes and therefore their capability to adapt to changing ecosystems (Cohan 2001; Tettelin et al. 2005; Gill et al. 2005). Additional ecological diversity exists in plasmids, transposons and pathogenicity islands as they can be easily shared in a favorable environment but still be absent in the same species found elsewhere (Wertz et al. 2003). This poses a major challenge for studying ALE and community microbial ecology indicating a continued need to develop a fitting theory that connects the fluid nature of microbial communities to their ecology (Wertz et al. 2003; Coleman et al. 2006). Understanding the nature and contribution of different processes that determine the frequencies of genes in any population is the biggest concern in population and evolutionary genetics (Prosser et al. 2007) and it is critical for an understanding of experimental evolution

    Metabolomics approach for determining growth-specific metabolites based on Fourier transform ion cyclotron resonance mass spectrometry

    Get PDF
    Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS) is the best MS technology for obtaining exact mass measurements owing to its great resolution and accuracy, and several outstanding FT-ICR/MS-based metabolomics approaches have been reported. A reliable annotation scheme is needed to deal with direct-infusion FT-ICR/MS metabolic profiling. Correlation analyses can help us not only uncover relations between the ions but also annotate the ions originated from identical metabolites (metabolite derivative ions). In the present study, we propose a procedure for metabolite annotation on direct-infusion FT-ICR/MS by taking into consideration the classification of metabolite-derived ions using correlation analyses. Integrated analysis based on information of isotope relations, fragmentation patterns by MS/MS analysis, co-occurring metabolites, and database searches (KNApSAcK and KEGG) can make it possible to annotate ions as metabolites and estimate cellular conditions based on metabolite composition. A total of 220 detected ions were classified into 174 metabolite derivative groups and 72 ions were assigned to candidate metabolites in the present work. Finally, metabolic profiling has been able to distinguish between the growth stages with the aid of PCA. The constructed model using PLS regression for OD600 values as a function of metabolic profiles is very useful for identifying to what degree the ions contribute to the growth stages. Ten phospholipids which largely influence the constructed model are highly abundant in the cells. Our analyses reveal that global modification of those phospholipids occurs as E. coli enters the stationary phase. Thus, the integrated approach involving correlation analyses, metabolic profiling, and database searching is efficient for high-throughput metabolomics

    Association of the Gene Polymorphisms IFN-γ +874, IL-13 −1055 and IL-4 −590 with Patterns of Reinfection with Schistosoma mansoni

    Get PDF
    Approximately 200 million people have schistosomiasis in parts of Africa, South America, the Middle East, the Caribbean and Asia. Several studies of multiple treatments and reinfections indicate that some people develop resistance to reinfection. Of all the immunologic findings associated with such studies, the most consistent observation is that resistance (usually defined as lower levels of infection upon reinfection) correlates with high IgE and low IgG4 antibodies against schistosome antigens. Our studies test whether single nucleotide polymorphisms residing in the gene or promoter regions of cytokines pivotal in controlling production of these antibody isotypes are different amongst those that develop resistance to reinfection as opposed to those that do not. Through genotyping of these polymorphisms in a cohort of occupationally exposed car washers, we found that men with certain genotypic patterns of polymorphisms in IL-4, IFN-γ, and IL-13 were significantly more likely to be resistant to reinfection than those with different patterns. These data provide initial insights into the potential genetic foundation of propensities of people to develop resistance to reinfection by schistosomes, and offer a basis for further molecular studies of how these polymorphisms might work at the transcriptional and gene product level in cells stimulated by schistosome antigens
    corecore