533 research outputs found

    Simulated three-component granular segregation in a rotating drum

    Full text link
    Discrete particle simulations are used to model segregation in granular mixtures of three different particle species in a horizontal rotating drum. Axial band formation is observed, with medium-size particles tending to be located between alternating bands of big and small particles. Partial radial segregation also appears; it precedes the axial segregation and is characterized by an inner core region richer in small particles. Axial bands are seen to merge during the long simulation runs, leading to a coarsening of the band pattern; the relocation of particles involved in one such merging event is examined. Overall, the behavior is similar to experiment and represents a generalization of what occurs in the simpler two-component mixture.Comment: 7 pages, 11 figures (low resolution color figures only; originals at author's website http://www.ph.biu.ac.il/~rapaport/research/granular.html) [revised version contains extra figures

    Granular Packings: Nonlinear elasticity, sound propagation and collective relaxation dynamics

    Full text link
    Experiments on isotropic compression of a granular assembly of spheres show that the shear and bulk moduli vary with the confining pressure faster than the 1/3 power law predicted by Hertz-Mindlin effective medium theories (EMT) of contact elasticity. Moreover, the ratio between the moduli is found to be larger than the prediction of the elastic theory by a constant value. The understanding of these discrepancies has been a longstanding question in the field of granular matter. Here we perform a test of the applicability of elasticity theory to granular materials. We perform sound propagation experiments, numerical simulations and theoretical studies to understand the elastic response of a deforming granular assembly of soft spheres under isotropic loading. Our results for the behavior of the elastic moduli of the system agree very well with experiments. We show that the elasticity partially describes the experimental and numerical results for a system under compressional loads. However, it drastically fails for systems under shear perturbations, particularly for packings without tangential forces and friction. Our work indicates that a correct treatment should include not only the purely elastic response but also collective relaxation mechanisms related to structural disorder and nonaffine motion of grains.Comment: 21 pages, 13 figure

    Scale separation in granular packings: stress plateaus and fluctuations

    Full text link
    It is demonstrated, by numerical simulations of a 2D assembly of polydisperse disks, that there exists a range (plateau) of coarse graining scales for which the stress tensor field in a granular solid is nearly resolution independent, thereby enabling an `objective' definition of this field. Expectedly, it is not the mere size of the the system but the (related) magnitudes of the gradients that determine the widths of the plateaus. Ensemble averaging (even over `small' ensembles) extends the widths of the plateaus to sub-particle scales. The fluctuations within the ensemble are studied as well. Both the response to homogeneous forcing and to an external compressive localized load (and gravity) are studied. Implications to small solid systems and constitutive relations are briefly discussed.Comment: 4 pages, 4 figures, RevTeX 4, Minor corrections to match the published versio

    Effective boundary conditions for dense granular flows

    Full text link
    We derive an effective boundary condition for granular flow taking into account the effect of the heterogeneity of the force network on sliding friction dynamics. This yields an intermediate boundary condition which lies in the limit between no-slip and Coulomb friction; two simple functions relating wall stress, velocity, and velocity variance are found from numerical simulations. Moreover, we show that this effective boundary condition corresponds to Navier slip condition when GDR MiDi's model is assumed to be valid, and that the slip length depends on the length scale that characterises the system, \emph{viz} the particle diameter.Comment: 4 pages, 5 figure

    Microscopic origin of granular ratcheting

    Full text link
    Numerical simulations of assemblies of grains under cyclic loading exhibit ``granular ratcheting'': a small net deformation occurs with each cycle, leading to a linear accumulation of deformation with cycle number. We show that this is due to a curious property of the most frequently used models of the particle-particle interaction: namely, that the potential energy stored in contacts is path-dependent. There exist closed paths that change the stored energy, even if the particles remain in contact and do not slide. An alternative method for calculating the tangential force removes granular ratcheting.Comment: 13 pages, 18 figure

    Phase transition in inelastic disks

    Full text link
    This letter investigates the molecular dynamics of inelastic disks without external forcing. By introducing a new observation frame with a rescaled time, we observe the virtual steady states converted from asymptotic energy dissipation processes. System behavior in the thermodynamic limit is carefully investigated. It is found that a phase transition with symmetry breaking occurs when the magnitude of dissipation is greater than a critical value.Comment: 9 pages, 6 figure

    Why Effective Medium Theory Fails in Granular Materials

    Full text link
    Experimentally it is known that the bulk modulus, K, and shear modulus, \mu, of a granular assembly of elastic spheres increase with pressure, p, faster than the p^1/3 law predicted by effective medium theory (EMT) based on Hertz-Mindlin contact forces. To understand the origin of these discrepancies, we perform numerical simulations of granular aggregates under compression. We show that EMT can describe the moduli pressure dependence if one includes the increasing number of grain-grain contacts with p. Most important, the affine assumption (which underlies EMT), is found to be valid for K(p) but breakdown seriously for \mu(p). This explains why the experimental and numerical values of \mu(p) are much smaller than the EMT predictions.Comment: 4 pages, 5 figures, http://polymer.bu.edu/~hmaks
    • …
    corecore