1,971 research outputs found

    MVCSLAM: Mono-Vision Corner SLAM for Autonomous Micro-Helicopters in GPS Denied Environments

    Get PDF
    We present a real-time vision navigation and ranging method (VINAR) for the purpose of Simultaneous Localization and Mapping (SLAM) using monocular vision. Our navigation strategy assumes a GPS denied unknown environment, whose indoor architecture is represented via corner based feature points obtained through a monocular camera. We experiment on a case study mission of vision based SLAM through a conventional maze of corridors in a large building with an autonomous Micro Aerial Vehicle (MAV). We propose a method for gathering useful landmarks from a monocular camera for SLAM use. We make use of the corners by exploiting the architectural features of the manmade indoors

    Interplay of gravitation and linear superposition of different mass eigenstates

    Get PDF
    The interplay of gravitation and the quantum-mechanical principle of linear superposition induces a new set of neutrino oscillation phases. These ensure that the flavor-oscillation clocks, inherent in the phenomenon of neutrino oscillations, redshift precisely as required by Einstein's theory of gravitation. The physical observability of these phases in the context of the solar neutrino anomaly, type-II supernovae, and certain atomic systems is briefly discussed

    MultiMetEval: comparative and multi-objective analysis of genome-scale metabolic models

    Get PDF
    Comparative metabolic modelling is emerging as a novel field, supported by the development of reliable and standardized approaches for constructing genome-scale metabolic models in high throughput. New software solutions are needed to allow efficient comparative analysis of multiple models in the context of multiple cellular objectives. Here, we present the user-friendly software framework Multi-Metabolic Evaluator (MultiMetEval), built upon SurreyFBA, which allows the user to compose collections of metabolic models that together can be subjected to flux balance analysis. Additionally, MultiMetEval implements functionalities for multi-objective analysis by calculating the Pareto front between two cellular objectives. Using a previously generated dataset of 38 actinobacterial genome-scale metabolic models, we show how these approaches can lead to exciting novel insights. Firstly, after incorporating several pathways for the biosynthesis of natural products into each of these models, comparative flux balance analysis predicted that species like Streptomyces that harbour the highest diversity of secondary metabolite biosynthetic gene clusters in their genomes do not necessarily have the metabolic network topology most suitable for compound overproduction. Secondly, multi-objective analysis of biomass production and natural product biosynthesis in these actinobacteria shows that the well-studied occurrence of discrete metabolic switches during the change of cellular objectives is inherent to their metabolic network architecture. Comparative and multi-objective modelling can lead to insights that could not be obtained by normal flux balance analyses. MultiMetEval provides a powerful platform that makes these analyses straightforward for biologists. Sources and binaries of MultiMetEval are freely available from https://github.com/PiotrZakrzewski/MetEv​al/downloads

    Improving the flux distributions simulated with genome-scale metabolic models of Saccharomyces cerevisiae

    Get PDF
    Abstract Genome-scale metabolic models (GEMs) can be used to evaluate genotype-phenotype relationships and their application to microbial strain engineering is increasing in popularity. Some of the algorithms used to simulate the phenotypes of mutant strains require the determination of a wild-type flux distribution. However, the accuracy of this reference, when calculated with flux balance analysis, has not been studied in detail before. Here, the wild-type simulations of selected GEMs for Saccharomyces cerevisiae have been analysed and most of the models tested predicted erroneous fluxes in central pathways, especially in the pentose phosphate pathway. Since the problematic fluxes were mostly related to areas of the metabolism consuming or producing NADPH/NADH, we have manually curated all reactions including these cofactors by forcing the use of NADPH/NADP+ in anabolic reactions and NADH/NAD+ for catabolic reactions. The curated models predicted more accurate flux distributions and performed better in the simulation of mutant phenotypes.FCT -Fuel Cell Technologies Program(SFRH/BD/51111/2010

    Co-evolution of strain design methods based on flux balance and elementary mode analysis

    Get PDF
    More than a decade ago, the first genome-scale metabolic models for two of the most relevant microbes for biotechnology applications, Escherichia coli and Saccaromyces cerevisiae, were published. Shortly after followed the publication of OptKnock, the first strain design method using bilevel optimization to couple cellular growth with the production of a target product. This initiated the development of a family of strain design methods based on the concept of flux balance analysis. Another family of strain design methods, based on the concept of elementary mode analysis, has also been growing. Although the computation of elementary modes is hindered by computational complexity, recent breakthroughs have allowed applying elementary mode analysis at the genome scale. Here we review and compare strain design methods and look back at the last ten years of in silico strain design with constraint-based models. We highlight some features of the different approaches and discuss the utilization of these methods in successful in vivo metabolic engineering applications.Novo Nordisk UK Research Foundation(NORTE-07-0124-FEDER-000028

    Partial inhibition and bilevel optimization in flux balance analysis

    Get PDF
    Motivation: Within Flux Balance Analysis, the investigation of complex subtasks, such as finding the optimal perturbation of the network or finding an optimal combination of drugs, often requires to set up a bilevel optimization problem. In order to keep the linearity and convexity of these nested optimization problems, an ON/OFF description of the effect of the perturbation (i.e. Boolean variable) is normally used. This restriction may not be realistic when one wants, for instance, to describe the partial inhibition of a reaction induced by a drug.Results: In this paper we present a formulation of the bilevel optimization which overcomes the oversimplified ON/OFF modeling while preserving the linear nature of the problem. A case study is considered: the search of the best multi-drug treatment which modulates an objective reaction and has the minimal perturbation on the whole network. The drug inhibition is described and modulated through a convex combination of a fixed number of Boolean variables. The results obtained from the application of the algorithm to the core metabolism of E.coli highlight the possibility of finding a broader spectrum of drug combinations compared to a simple ON/OFF modeling.Conclusions: The method we have presented is capable of treating partial inhibition inside a bilevel optimization, without loosing the linearity property, and with reasonable computational performances also on large metabolic networks. The more fine-graded representation of the perturbation allows to enlarge the repertoire of synergistic combination of drugs for tasks such as selective perturbation of cellular metabolism. This may encourage the use of the approach also for other cases in which a more realistic modeling is required. \ua9 2013 Facchetti and Altafini; licensee BioMed Central Ltd

    Large-Scale Bi-Level Strain Design Approaches and Mixed-Integer Programming Solution Techniques

    Get PDF
    The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution techniques developed here will facilitate the strain design process and extend the scope of its application to metabolic engineering

    Identification of Functional Differences in Metabolic Networks Using Comparative Genomics and Constraint-Based Models

    Get PDF
    Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different functional predictions. Because CONGA provides a general framework, it can be applied to find functional differences across models and biological systems beyond those presented here
    • …
    corecore