785 research outputs found

    Bilateral linear scleroderma "en coup de sabre" associated with facial atrophy and neurological complications

    Get PDF
    BACKGROUND: Linear scleroderma "en coup de sabre" (LSCS) usually affects one side of the face and head in the frontoparietal area with band-like indurated skin lesions. The disease may be associated with facial hemiatrophy. Various ophthalmological and neurological abnormalities have been observed in patients with LSCS. We describe an unusual case of LSC. CASE PRESENTATION: A 23 year old woman presented bilateral LSCS and facial atrophy. The patient had epileptic seizures as well as oculomotor and facial nerve palsy on the left side which also had pronounced skin involvement. Clinical features of different stages of the disease are presented. CONCLUSIONS: The findings of the presented patient with bilateral LSCS and facial atrophy provide further evidence for a neurological etiology of the disease and may also indicate that classic progressive facial hemiatrophy (Parry-Romberg syndrome) and LSCS actually represent different spectra of the same disease

    Non-supersymmetric heterotic model building

    Get PDF
    We investigate orbifold and smooth Calabi-Yau compactifications of the non-supersymmetric heterotic SO(16)xSO(16) string. We focus on such Calabi-Yau backgrounds in order to recycle commonly employed techniques, like index theorems and cohomology theory, to determine both the fermionic and bosonic 4D spectra. We argue that the N=0 theory never leads to tachyons on smooth Calabi-Yaus in the large volume approximation. As twisted tachyons may arise on certain singular orbifolds, we conjecture that such tachyonic states are lifted in the full blow-up. We perform model searches on selected orbifold geometries. In particular, we construct an explicit example of a Standard Model-like theory with three generations and a single Higgs field.Comment: 1+30 pages latex, 11 tables; v2: references and minor revisions added, matches version published in JHE

    Effects of serum proteins on corrosion behavior of ISO 5832–9 alloy modified by titania coatings

    Get PDF
    Stainless steel ISO 5832–9 type is often used to perform implants which operate in protein-containing physiological environments. The interaction between proteins and surface of the implant may affect its corrosive properties. The aim of this work was to study the effect of selected serum proteins (albumin and γ-globulins) on the corrosion of ISO 5832–9 alloy (trade name M30NW) which surface was modified by titania coatings. These coatings were obtained by sol– gel method and heated at temperatures of 400 and 800 °C. To evaluate the effect of the proteins, the corrosion tests were performed with and without the addition of proteins with concentration of 1 g L−1 to the physiological saline solution (0.9 % NaCl, pH 7.4) at 37 °C. The tests were carried out within 7 days. The following electrochemical methods were used: open circuit potential, linear polarization resistance, and electrochemical impedance spectroscopy. In addition, surface analysis by optical microscopy and X-ray photoelectron spectroscopy (XPS) method was done at the end of weekly corrosion tests. The results of corrosion tests showed that M30NW alloy both uncoated and modified with titania coatings exhibits a very good corrosion resistance during weekly exposition to corrosion medium. The best corrosion resistance in 0.9 % NaCl solution is shown by alloy samples modified by titania coating annealed at 400 °C. The serumproteins have no significant effect onto corrosion of investigated biomedical steel. The XPS results confirmed the presence of proteins on the alloy surface after 7 days of immersion in proteincontaining solutions.The investigations were supported by the National Science Centre project No. N N507 501339. The authors gratefully acknowledge Dr. Janusz Sobczak and Dr. hab. Wojciech Lisowski from Institute of Physical Chemistry of PAS for XPS surface analyses

    Lst4, the yeast Fnip1/2 orthologue, is a DENN-family protein.

    Get PDF
    The folliculin/Fnip complex has been demonstrated to play a crucial role in the mechanisms underlying Birt-Hogg-Dubé (BHD) syndrome, a rare inherited cancer syndrome. Lst4 has been previously proposed to be the Fnip1/2 orthologue in yeast and therefore a member of the DENN family. In order to confirm this, we solved the crystal structure of the N-terminal region of Lst4 from Kluyveromyces lactis and show it contains a longin domain, the first domain of the full DENN module. Furthermore, we demonstrate that Lst4 through its DENN domain interacts with Lst7, the yeast folliculin orthologue. Like its human counterpart, the Lst7/Lst4 complex relocates to the vacuolar membrane in response to nutrient starvation, most notably in carbon starvation. Finally, we express and purify the recombinant Lst7/Lst4 complex and show that it exists as a 1 : 1 heterodimer in solution. This work confirms the membership of Lst4 and the Fnip proteins in the DENN family, and provides a basis for using the Lst7/Lst4 complex to understand the molecular function of folliculin and its role in the pathogenesis of BHD syndrome.AP, BKB and RKN were supported by the Myrovlytis Trust. DBA was supported by a NHMRC CJ Martin Fellowship (APP1072476). LHW was supported by Medical Research Council (MRC) studentship, MR/J006580/1 and TPL by University College London. SD was supported by Fondation de France, La Ligue National contre le Cancer (Comité de Paris / Ile-de-France and Comité de l’Oise); TLB and NZ thank the University of Cambridge and The Wellcome Trust for facilities and support.This is the final version of the article. It was first available from Royal Society Publishing via http://dx.doi.org/10.1098/rsob.15017

    6D Effective Action of Heterotic Compactification on K3 with nontrivial Gauge Bundles

    Full text link
    We compute the six-dimensional effective action of the heterotic string compactified on K3 for the standard embedding and for a class of backgrounds with line bundles and appropriate Yang-Mills fluxes. We compute the couplings of the charged scalars and the bundle moduli as functions of the geometrical K3 moduli from a Kaluza-Klein analysis. We derive the D-term potential and show that in the flux backgrounds U(1) vector multiplets become massive by a Stuckelberg mechanism.Comment: 41 pages, typos corrected, references adde

    Transparent nanometric organic luminescent films as UV-active components in photonic structures

    Get PDF
    A new kind of visible-blind organic thin-film material, consisting of a polymeric matrix with a high concentration of embedded 3-hydroxyflavone (3HF) dye molecules, that absorbs UV light and emits green light is presented. The thin films can be grown on sensitive substrates, including flexible polymers and paper. Their suitability as photonic active components photonic devices is demonstrated. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    A Global SU(5) F-theory model with Wilson line breaking

    Full text link
    We engineer compact SU(5) Grand Unified Theories in F-theory in which GUT-breaking is achieved by a discrete Wilson line. Because the internal gauge field is flat, these models avoid the high scale threshold corrections associated with hypercharge flux. Along the way, we exemplify the `local-to-global' approach in F-theory model building and demonstrate how the Tate divisor formalism can be used to address several challenges of extending local models to global ones. These include in particular the construction of G-fluxes that extend non-inherited bundles and the engineering of U(1) symmetries. We go beyond chirality computations and determine the precise (charged) massless spectrum, finding exactly three families of quarks and leptons but excessive doublet and/or triplet pairs in the Higgs sector (depending on the example) and vector-like exotics descending from the adjoint of SU(5)_{GUT}. Understanding why vector-like pairs persist in the Higgs sector without an obvious symmetry to protect them may shed light on new solutions to the mu problem in F-theory GUTs.Comment: 95 pages (71 pages + 1 Appendix); v2 references added, minor correction

    Heterotic Line Bundle Standard Models

    Get PDF
    In a previous publication, arXiv:1106.4804, we have found 200 models from heterotic Calabi-Yau compactifications with line bundles, which lead to standard models after taking appropriate quotients by a discrete symmetry and introducing Wilson lines. In this paper, we construct the resulting standard models explicitly, compute their spectrum including Higgs multiplets, and analyze some of their basic properties. After removing redundancies we find about 400 downstairs models, each with the precise matter spectrum of the supersymmetric standard model, with one, two or three pairs of Higgs doublets and no exotics of any kind. In addition to the standard model gauge group, up to four Green-Schwarz anomalous U(1) symmetries are present in these models, which constrain the allowed operators in the four-dimensional effective supergravity. The vector bosons associated to these anomalous U(1) symmetries are massive. We explicitly compute the spectrum of allowed operators for each model and present the results, together with the defining data of the models, in a database of standard models accessible at http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html. Based on these results we analyze elementary phenomenological properties. For example, for about 200 models all dimension four and five proton decay violating operators are forbidden by the additional U(1) symmetries.Comment: 55 pages, Latex, 3 pdf figure

    Gauged Linear Sigma Models for toroidal orbifold resolutions

    Full text link
    Toroidal orbifolds and their resolutions are described within the framework of (2,2) Gauged Linear Sigma Models (GLSMs). Our procedure describes two-tori as hypersurfaces in (weighted) projective spaces. The description is chosen such that the orbifold singularities correspond to the zeros of their homogeneous coordinates. The individual orbifold singularities are resolved using a GLSM guise of non-compact toric resolutions, i.e. replacing discrete orbifold actions by Abelian worldsheet gaugings. Given that we employ the same global coordinates for both the toroidal orbifold and its resolutions, our GLSM formalism confirms the gluing procedure on the level of divisors discussed by Lust et al. Using our global GLSM description we can study the moduli space of such toroidal orbifolds as a whole. In particular, changes in topology can be described as phase transitions of the underlying GLSM. Finally, we argue that certain partially resolvable GLSMs, in which a certain number of fixed points can never be resolved, might be useful for the study of mini-landscape orbifold MSSMs.Comment: 71 pages, 2 figure

    Linear Sigma Models with Torsion

    Full text link
    Gauged linear sigma models with (0,2) supersymmetry allow a larger choice of couplings than models with (2,2) supersymmetry. We use this freedom to find a fully linear construction of torsional heterotic compactifications, including models with branes. As a non-compact example, we describe a family of metrics which correspond to deformations of the heterotic conifold by turning on H-flux. We then describe compact models which are gauge-invariant only at the quantum level. Our construction gives a generalization of symplectic reduction. The resulting spaces are non-Kahler analogues of familiar toric spaces like complex projective space. Perturbatively conformal models can be constructed by considering intersections.Comment: 40 pages, LaTeX, 1 figure; references added; a new section on supersymmetry added; quantization condition revisite
    corecore