10,363 research outputs found

    Kinetics of Phase Separation in Thin Films: Simulations for the Diffusive Case

    Get PDF
    We study the diffusion-driven kinetics of phase separation of a symmetric binary mixture (AB), confined in a thin-film geometry between two parallel walls. We consider cases where (a) both walls preferentially attract the same component (A), and (b) one wall attracts A and the other wall attracts B (with the same strength). We focus on the interplay of phase separation and wetting at the walls, which is referred to as {\it surface-directed spinodal decomposition} (SDSD). The formation of SDSD waves at the two surfaces, with wave-vectors oriented perpendicular to them, often results in a metastable layered state (also referred to as ``stratified morphology''). This state is reminiscent of the situation where the thin film is still in the one-phase region but the surfaces are completely wet, and hence coated with thick wetting layers. This metastable state decays by spinodal fluctuations and crosses over to an asymptotic growth regime characterized by the lateral coarsening of pancake-like domains. These pancakes may or may not be coated by precursors of wetting layers. We use Langevin simulations to study this crossover and the growth kinetics in the asymptotic coarsening regime.Comment: 39 pages, 19 figures, submitted to Phys.Rev.

    A New Monte Carlo Method and Its Implications for Generalized Cluster Algorithms

    Full text link
    We describe a novel switching algorithm based on a ``reverse'' Monte Carlo method, in which the potential is stochastically modified before the system configuration is moved. This new algorithm facilitates a generalized formulation of cluster-type Monte Carlo methods, and the generalization makes it possible to derive cluster algorithms for systems with both discrete and continuous degrees of freedom. The roughening transition in the sine-Gordon model has been studied with this method, and high-accuracy simulations for system sizes up to 102421024^2 were carried out to examine the logarithmic divergence of the surface roughness above the transition temperature, revealing clear evidence for universal scaling of the Kosterlitz-Thouless type.Comment: 4 pages, 2 figures. Phys. Rev. Lett. (in press

    Far-from-equilibrium growth of thin films in a temperature gradient

    Full text link
    The irreversible growth of thin films under far-from-equilibrium conditions is studied in (2+1)−(2+1)-dimensional strip geometries. Across one of the transverse directions, a temperature gradient is applied by thermal baths at fixed temperatures between T1T_1 and T2T_2, where T1<Tchom<T2T_1<T_c^{hom}<T_2 and Tchom=0.69(1)T_c^{hom}=0.69(1) is the critical temperature of the system in contact with an homogeneous thermal bath. By using standard finite-size scaling methods, we characterized a continuous order-disorder phase transition driven by the thermal bath gradient with critical temperature Tc=0.84(2)T_c=0.84(2) and critical exponents ν=1.53(6)\nu=1.53(6), γ=2.54(11)\gamma=2.54(11), and β=0.26(8)\beta=0.26(8), which belong to a different universality class from that of films grown in an homogeneous bath. Furthermore, the effects of the temperature gradient are analyzed by means of a bond model that captures the growth dynamics. The interplay of geometry and thermal bath asymmetries leads to growth bond flux asymmetries and the onset of transverse ordering effects that explain qualitatively the shift in the critical temperature.Comment: 4 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1207.253

    Domain Growth in Ising Systems with Quenched Disorder

    Get PDF
    We present results from extensive Monte Carlo (MC) simulations of domain growth in ferromagnets and binary mixtures with quenched disorder. These are modeled by the "random-bond Ising model" and the "dilute Ising model" with either nonconserved (Glauber) spin-flip kinetics or conserved (Kawasaki) spin-exchange kinetics. In all cases, our MC results are consistent with power-law growth with an exponent θ(T,ϵ)\theta (T,\epsilon) which depends on the quench temperature TT and the disorder amplitude ϵ\epsilon. Such exponents arise naturally when the coarsening domains are trapped by energy barriers which grow logarithmically with the domain size. Our MC results show excellent agreement with the predicted dependence of θ(T,ϵ)\theta (T,\epsilon).Comment: 11 pages, 15 figure

    Orientational correlations and the effect of spatial gradients in the equilibrium steady state of hard rods in 2D : A study using deposition-evaporation kinetics

    Get PDF
    Deposition and evaporation of infinitely thin hard rods (needles) is studied in two dimensions using Monte Carlo simulations. The ratio of deposition to evaporation rates controls the equilibrium density of rods, and increasing it leads to an entropy-driven transition to a nematic phase in which both static and dynamical orientational correlation functions decay as power laws, with exponents varying continuously with deposition-evaporation rate ratio. Our results for the onset of the power-law phase agree with those for a conserved number of rods. At a coarse-grained level, the dynamics of the non-conserved angle field is described by the Edwards-Wilkinson equation. Predicted relations between the exponents of the quadrupolar and octupolar correlation functions are borne out by our numerical results. We explore the effects of spatial inhomogeneity in the deposition-evaporation ratio by simulations, entropy-based arguments and a study of the new terms introduced in the free energy. The primary effect is that needles tend to align along the local spatial gradient of the ratio. A uniform gradient thus induces a uniformly aligned state, as does a gradient which varies randomly in magnitude and sign, but acts only in one direction. Random variations of deposition-evaporation rates in both directions induce frustration, resulting in a state with glassy characteristics.Comment: modified version, Accepted for publication in Physical Review

    Critical behavior of colloid-polymer mixtures in random porous media

    Full text link
    We show that the critical behavior of a colloid-polymer mixture inside a random porous matrix of quenched hard spheres belongs to the universality class of the random-field Ising model. We also demonstrate that random-field effects in colloid-polymer mixtures are surprisingly strong. This makes these systems attractive candidates to study random-field behavior experimentally.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let
    • …
    corecore