7,688 research outputs found

    Progressor: Personalized visual access to programming problems

    Get PDF
    This paper presents Progressor, a visualization of open student models intended to increase the student's motivation to progress on educational content. The system visualizes not only the user's own model, but also the peers' models. It allows sorting the peers' models using a number of criteria, including the overall progress and the progress on a specific topic. Also, in this paper we present results of a classroom study confirming our hypothesis that by showing a student the peers' models and ranking them by progress it is possible to increase the student's motivation to compete and progress in e-learning systems. © 2011 IEEE

    Full Counting Statistics in Strongly Interacting Systems: Non-Markovian Effects

    Full text link
    We present a theory of full counting statistics for electron transport through interacting electron systems with non-Markovian dynamics. We illustrate our approach for transport through a single-level quantum dot and a metallic single-electron transistor to second order in the tunnel-coupling strength, and discuss under which circumstances non-Markovian effects appear in the transport properties.Comment: 4 pages, 2 figures, LaTeX; typos added, references adde

    Faraday-rotation fluctuation spectroscopy with static and oscillating magnetic fields

    Full text link
    By Faraday-rotation fluctuation spectroscopy one measures the spin noise via Faraday-induced fluctuations of the polarization plane of a laser transmitting the sample. In the fist part of this paper, we present a theoretical model of recent experiments on alkali gas vapors and semiconductors, done in the presence of a {\em static} magnetic field. In a static field, the spin noise shows a resonance line, revealing the Larmor frequency and the spin coherence time T2T_2 of the electrons. Second, we discuss the possibility to use an {\em oscillating} magnetic field in the Faraday setup. With an oscillating field applied, one can observe multi-photon absorption processes in the spin noise. Furthermore an oscillating field could also help to avoid line broadening due to structural or chemical inhomogeneities in the sample, and thereby increase the precision of the spin-coherence time measurement.Comment: 5 pages, 7 figure

    Frequency-Dependent Current Noise through Quantum-Dot Spin Valves

    Full text link
    We study frequency-dependent current noise through a single-level quantum dot connected to ferromagnetic leads with non-collinear magnetization. We propose to use the frequency-dependent Fano factor as a tool to detect single-spin dynamics in the quantum dot. Spin precession due to an external magnetic and/or a many-body exchange field affects the Fano factor of the system in two ways. First, the tendency towards spin-selective bunching of the transmitted electrons is suppressed, which gives rise to a reduction of the low-frequency noise. Second, the noise spectrum displays a resonance at the Larmor frequency, whose lineshape depends on the relative angle of the leads' magnetizations.Comment: 12 pages, 15 figure

    Quantum tunneling through planar p-n junctions in HgTe quantum wells

    Full text link
    We demonstrate that a p-n junction created electrically in HgTe quantum wells with inverted band-structure exhibits interesting intraband and interband tunneling processes. We find a perfect intraband transmission for electrons injected perpendicularly to the interface of the p-n junction. The opacity and transparency of electrons through the p-n junction can be tuned by changing the incidence angle, the Fermi energy and the strength of the Rashba spin-orbit interaction. The occurrence of a conductance plateau due to the formation of topological edge states in a quasi-one-dimensional p-n junction can be switched on and off by tuning the gate voltage. The spin orientation can be substantially rotated when the samples exhibit a moderately strong Rashba spin-orbit interaction.Comment: 4 pages, 4 figure

    External Control of a Metal-Insulator Transition in GaMnAs Wires

    Full text link
    Quantum transport in disordered ferromagnetic (III,Mn)V semiconductors is studied theoretically. Mesoscopic wires exhibit an Anderson disorder-induced metal-insulator transition that can be controlled by a weak external magnetic field. This metal-insulator transition should also occur in other materials with large anisotropic magneto resistance effects. The transition can be useful for studies of zero-temperature quantum critical phase transitions and fundamental material properties.Comment: Major revised final versio

    Diversity of chemistry and excitation conditions in the high-mass star forming complex W33

    Full text link
    The object W33 is a giant molecular cloud that contains star forming regions at various evolutionary stages from quiescent clumps to developed H II regions. Since its star forming regions are located at the same distance and the primary material of the birth clouds is probably similar, we conducted a comparative chemical study to trace the chemical footprint of the different phases of evolution. We observed six clumps in W33 with the Atacama Pathfinder Experiment (APEX) telescope at 280 GHz and the Submillimeter Array (SMA) at 230 GHz. We detected 27 transitions of 10 different molecules in the APEX data and 52 transitions of 16 different molecules in the SMA data. The chemistry on scales larger than \sim0.2 pc, which are traced by the APEX data, becomes more complex and diverse the more evolved the star forming region is. On smaller scales traced by the SMA data, the chemical complexity and diversity increase up to the hot core stage. In the H II region phase, the SMA spectra resemble the spectra of the protostellar phase. Either these more complex molecules are destroyed or their emission is not compact enough to be detected with the SMA. Synthetic spectra modelling of the H2_{2}CO transitions, as detected with the APEX telescope, shows that both a warm and a cold component are needed to obtain a good fit to the emission for all sources except for W33 Main1. The temperatures and column densities of the two components increase during the evolution of the star forming regions. The integrated intensity ratios N2_{2}H+^{+}(3-2)/CS(6-5) and N2_{2}H+^{+}(3-2)/H2_{2}CO(42,2_{2,2}-32,1_{2,1}) show clear trends as a function of evolutionary stage, luminosity, luminosity-to-mass ratio, and H2_{2} peak column density of the clumps and might be usable as chemical clocks.Comment: 66 pages, 28 figures, 8 tables, accepted for publication at A&

    Das italienische Theater zwischen 1900 und 1949

    Get PDF
    corecore