48 research outputs found

    Similarity-aware query refinement for data exploration

    Get PDF

    Machine Learning-Based Predictive Models for Detection of Cardiovascular Diseases

    Get PDF
    Cardiovascular diseases present a significant global health challenge that emphasizes the critical need for developing accurate and more effective detection methods. Several studies have contributed valuable insights in this field, but it is still necessary to advance the predictive models and address the gaps in the existing detection approaches. For instance, some of the previous studies have not considered the challenge of imbalanced datasets, which can lead to biased predictions, especially when the datasets include minority classes. This study’s primary focus is the early detection of heart diseases, particularly myocardial infarction, using machine learning techniques. It tackles the challenge of imbalanced datasets by conducting a comprehensive literature review to identify effective strategies. Seven machine learning and deep learning classifiers, including K-Nearest Neighbors, Support Vector Machine, Logistic Regression, Convolutional Neural Network, Gradient Boost, XGBoost, and Random Forest, were deployed to enhance the accuracy of heart disease predictions. The research explores different classifiers and their performance, providing valuable insights for developing robust prediction models for myocardial infarction. The study’s outcomes emphasize the effectiveness of meticulously fine-tuning an XGBoost model for cardiovascular diseases. This optimization yields remarkable results: 98.50% accuracy, 99.14% precision, 98.29% recall, and a 98.71% F1 score. Such optimization significantly enhances the model’s diagnostic accuracy for heart disease

    Deep Learning-based Method for Enhancing the Detection of Arabic Authorship Attribution using Acoustic and Textual-based Features

    Get PDF
    Authorship attribution (AA) is defined as the identification of the original author of an unseen text. It is found that the style of the author’s writing can change from one topic to another, but the author’s habits are still the same in different texts. The authorship attribution has been extensively studied for texts written in different languages such as English. However, few studies investigated the Arabic authorship attribution (AAA) due to the special challenges faced with the Arabic scripts. Additionally, there is a need to identify the authors of texts extracted from livestream broadcasting and the recorded speeches to protect the intellectual property of these authors. This paper aims to enhance the detection of Arabic authorship attribution by extracting different features and fusing the outputs of two deep learning models. The dataset used in this study was collected from the weekly livestream and recorded Arabic sermons that are available publicly on the official website of Al-Haramain in Saudi Arabia. The acoustic, textual and stylometric features were extracted for five authors. Then, the data were pre-processed and fed into the deep learning-based models (CNN architecture and its pre-trained ResNet34). After that the hard and soft voting ensemble methods were applied for combining the outputs of the applied models and improve the overall performance. The experimental results showed that the use of CNN with textual data obtained an acceptable performance using all evaluation metrics. Then, the performance of ResNet34 model with acoustic features outperformed the other models and obtained the accuracy of 90.34%. Finally, the results showed that the soft voting ensemble method enhanced the performance of AAA and outperformed the other method in terms of accuracy and precision, which obtained 93.19% and 0.9311 respectively

    Augmenting IoT Intrusion Detection System Performance Using Deep Neural Network

    Get PDF
    Due to their low power consumption and computing power, Internet of Things (IoT) devices are difficult to secure, and the rapid growth of IoT devices in the home increases the risk of cyber-attacks. One method of preventing cyberattacks is to employ an intrusion detection system (IDS), which detects incoming attacks and notifies the user, allowing for the implementation of appropriate countermeasures. Attempts have been made in the past to detect new attacks using machine learning and deep learning, but these efforts have been unsuccessful. In this paper, we classify network attacks using two Convolutional Neural Networks (CNN) models i.e., MyCNN and IoTCNN to automatically detect various kind malignant and benign intrusion in IoT network. The purpose of this research is to evaluate the use of deep learning in IoT IDS. The neural network was trained in this experiment using the NF-UNSW-NB15-v2 dataset, which contains nine distinct types of attacks. The data from the network stream was converted to Red Green and Blue (RGB) images, which were then used to train the neural network. To establish baseline models, we proposed two models with the name of MyCNN and IoTCNN. When compared the proposed MyCNN convolutional neural network for network attack classification, the IoTCNN was outperformed by the MyCNN model. Additionally, it demonstrates that both networks achieve higher accuracy in the majority of categories but the IoTCNN achieved lower than the proposed MyCNN model for network attack detection. We discovered that the MyCNN is generally more suitable to be deployed for intrusion detection in IoT devices

    Biomimetic Whitening Effect of Polyphosphate-Bleaching Agents on Dental Enamel.

    Get PDF
    This in vitro study investigated the extrinsic tooth-whitening effect of bleaching products containing polyphosphates on the dental enamel surface compared to 10% carbamide peroxide (CP). Eighty human molars were randomly allocated into four whitening-products groups. Group A (control) was treated with 10% CP (Opalescence). The other groups with non-CP over-the-counter (OTC) products were group B = polyphosphates (iWhiteWhitening-Kit); group C = polyphosphates+fluoride (iWhite-toothpaste); and group D = sodium bicarbonate (24K-Whitening-Pen). L*, a*, b* color-parameters were spectrophotometer-recorded at baseline (T0), one day (T1), and one month (T2) post-treatment. Changes in teeth color (ΔEab) were calculated. Data were analyzed using ANOVA and the Bonferroni test (α = 0.05). Groups A, B, and D showed significant differences in ΔL*&Δa* parameters at T1, but not in Δb* at T0. Group C showed no difference for ΔL*, Δa*, Δb* at T0 and T1. Group A showed differences for ΔL*, Δa*, Δb*, at T2, while groups B, C, and D had no difference in any parameters at T0. At T1, ΔEab values = A > D> B > C (ΔEab = 13.4 > 2.4 > 2.1 > 1.2). At T2, ΔEab values increased = A > B > C > D (ΔEab = 12.2 > 10.6 > 9.2 > 2.4). In conclusion, the 10% CP and Biomimetic polyphosphate extrinsic whitening kit demonstrated the highest color change, while simulated brushing with dark stain toothpaste and a whitening pen demonstrated the lowest color change at both measurement intervals

    Are we ready for the next pandemic? Lessons learned from healthcare professionals’ perspectives during the COVID-19 pandemic

    Get PDF
    BackgroundThe mental health and wellbeing of people watching the Corona Virus Disease 2019 (COVID-19) pandemic unfold has been discussed widely, with many experiencing feelings of anxiety and depression. The state of mental health of medical staff on the frontlines providing care should be examined; medical staff are overworked to meet the demands of providing care to the rise in cases and deterioration in capacity to meet demands, and this has put them under great psychological pressure. This may lead to an increase in medical errors, affect quality of care, and reduce staff retention rates. Understanding the impact the pandemic has had on healthcare professionals is needed to provide recommendations to prepare for future crises.ObjectivesTo be able to meet the needs of the medical workforce on the frontlines and inform psychological support interventions and strategies for future pandemics, we aim to identify and explore the psychological impact of COVID-19 in Kuwait on healthcare professionals in close contact with patients.MethodsUsing semi-structured interviews, we conducted interviews between February and July 2021 with 20 healthcare professionals across Ministry of Health hospitals who were part of COVID teams. Interviews were transcribed verbatim, and analysis was conducted using principles of thematic framework analysis.ResultsThree themes emerged to help prepare future healthcare frontline workers on an individual, organizational, and national level: enhance self-resilience, a better-equipped workforce and healthcare environment, and mitigate stigma and increase public awareness.ConclusionThe results have assisted in highlighting areas of improvement to support the healthcare workforce in the current environment, as well as better prepare them for future pandemics. The findings have also provided insight to recommend targeted interventions. These should improve the psychological wellbeing and help in supporting healthcare professionals to reduce burnout, continue effective care of patients, and enhance resilience

    Viral shedding and antibody response in 37 patients with MERS-coronavirus infection

    Get PDF
    Background. The Middle East respiratory syndrome (MERS) coronavirus causes isolated cases and outbreaks of severe respiratory disease. Essential features of the natural history of disease are poorly understood. Methods. We studied 37 adult patients infected with MERS coronavirus for viral load in the lower and upper respiratory tracts (LRT and URT, respectively), blood, stool, and urine. Antibodies and serum neutralizing activities were determined over the course of disease. Results. One hundred ninety-nine LRT samples collected during the 3 weeks following diagnosis yielded virus RNA in 93% of tests. Average (maximum) viral loads were 5 × 106 (6 × 1010) copies/mL. Viral loads (positive detection frequencies) in 84 URT samples were 1.9 × 104 copies/mL (47.6%). Thirty-three percent of all 108 serum samples tested yielded viral RNA. Only 14.6% of stool and 2.4% of urine samples yielded viral RNA. All seroconversions occurred during the first 2 weeks after diagnosis, which corresponds to the second and third week after symptom onset. Immunoglobulin M detection provided no advantage in sensitivity over immunoglobulin G (IgG) detection. All surviving patients, but only slightly more than half of all fatal cases, produced IgG and neutralizing antibodies. The levels of IgG and neutralizing antibodies were weakly and inversely correlated with LRT viral loads. Presence of antibodies did not lead to the elimination of virus from LRT. Conclusions. The timing and intensity of respiratory viral shedding in patients with MERS closely matches that of those with severe acute respiratory syndrome. Blood viral RNA does not seem to be infectious. Extrapulmonary loci of virus replication seem possible. Neutralizing antibodies do not suffice to clear the infection

    Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus

    Get PDF
    The Middle East respiratory syndrome coronavirus (MERS-CoV) was first documented in the Kingdom of Saudi Arabia (KSA) in 2012 and, to date, has been identified in 180 cases with 43% mortality. In this study, we have determined the MERS-CoV evolutionary rate, documented genetic variants of the virus and their distribution throughout the Arabian peninsula, and identified the genome positions under positive selection, important features for monitoring adaptation of MERS-CoV to human transmission and for identifying the source of infections. Respiratory samples from confirmed KSA MERS cases from May to September 2013 were subjected to whole-genome deep sequencing, and 32 complete or partial sequences (20 were ≄99% complete, 7 were 50 to 94% complete, and 5 were 27 to 50% complete) were obtained, bringing the total available MERS-CoV genomic sequences to 65. An evolutionary rate of 1.12 × 10−3 substitutions per site per year (95% credible interval [95% CI], 8.76 × 10−4; 1.37 × 10−3) was estimated, bringing the time to most recent common ancestor to March 2012 (95% CI, December 2011; June 2012). Only one MERS-CoV codon, spike 1020, located in a domain required for cell entry, is under strong positive selection. Four KSA MERS-CoV phylogenetic clades were found, with 3 clades apparently no longer contributing to current cases. The size of the population infected with MERS-CoV showed a gradual increase to June 2013, followed by a decline, possibly due to increased surveillance and infection control measures combined with a basic reproduction number (R0) for the virus that is less than 1

    Prediction of the SARS-CoV-2 Derived T-Cell Epitopes’ Response Against COVID Variants

    Get PDF
    The COVID-19 outbreak began in December 2019 and was declared a global health emergency by the World Health Organization. The four most dominating variants are Beta, Gamma, Delta, and Omicron. After the administration of vaccine doses, an eminent decline in new cases has been observed. The COVID-19 vaccine induces neutralizing antibodies and T-cells in our bodies. However, strong variants like Delta and Omicron tend to escape these neutralizing antibodies elicited by COVID-19 vaccination. Therefore, it is indispensable to study, analyze and most importantly, predict the response of SARS-CoV-2-derived t-cell epitopes against Covid variants in vaccinated and unvaccinated persons. In this regard, machine learning can be effectively utilized for predicting the response of COVID-derived t-cell epitopes. In this study, prediction of T-cells Epitopes’ response was conducted for vaccinated and unvaccinated people for Beta, Gamma, Delta, and Omicron variants. The dataset was divided into two classes, i.e., vaccinated and unvaccinated, and the predicted response of T-cell Epitopes was divided into three categories, i.e., Strong, Impaired, and Over-activated. For the aforementioned prediction purposes, a self-proposed Bayesian neural network has been designed by combining variational inference and flow normalization optimizers. Furthermore, the Hidden Markov Model has also been trained on the same dataset to compare the results of the self-proposed Bayesian neural network with this state-of-the-art statistical approach. Extensive experimentation and results demonstrate the efficacy of the proposed network in terms of accurate prediction and reduced error

    An Adaptive Early Stopping Technique for DenseNet169-Based Knee Osteoarthritis Detection Model

    Get PDF
    Knee osteoarthritis (OA) detection is an important area of research in health informatics that aims to improve the accuracy of diagnosing this debilitating condition. In this paper, we investigate the ability of DenseNet169, a deep convolutional neural network architecture, for knee osteoarthritis detection using X-ray images. We focus on the use of the DenseNet169 architecture and propose an adaptive early stopping technique that utilizes gradual cross-entropy loss estimation. The proposed approach allows for the efficient selection of the optimal number of training epochs, thus preventing overfitting. To achieve the goal of this study, the adaptive early stopping mechanism that observes the validation accuracy as a threshold was designed. Then, the gradual cross-entropy (GCE) loss estimation technique was developed and integrated to the epoch training mechanism. Both adaptive early stopping and GCE were incorporated into the DenseNet169 for the OA detection model. The performance of the model was measured using several metrics including accuracy, precision, and recall. The obtained results were compared with those obtained from the existing works. The comparison shows that the proposed model outperformed the existing solutions in terms of accuracy, precision, recall, and loss performance, which indicates that the adaptive early stopping coupled with GCE improved the ability of DenseNet169 to accurately detect knee OA
    corecore