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Abstract

Database users are easily overwhelmed by the sheer size of data found in large-scale scientific and

financial databases. Exploring these databases to make sense of the explored data and to discover

interesting insights (i.e., data exploration) has been, and still is, a hideous and labour-intensive task,

especially for non-expert users with no solid background of the underlying data. Some three decades

ago, the database research community noticed the limitation of traditional DBMS in supporting users

for data exploration tasks. Since then, the research community has proposed and designed various

effective and efficient data exploration techniques to assist users in extracting interesting insights

from their data. An instance of these techniques is the Query Refinement technique.

In query refinement techniques, users’ queries are assumed to be imprecise, i.e., the returned result

does not meet some user-defined constraints. Accordingly, the goal of query refinement techniques

is to automatically refine these imprecise queries to maximize users’ satisfaction with the results. In

particular, the predicates of the queries are carefully modified so that the returned results satisfy the

user-defined constraints. Since users’ constraints on the queries results are diverse and miscellaneous,

this thesis focuses on two specific forms of constraints in exploring relational and sequential data,

namely, 1) user-defined aggregate constraints on the result, and 2) user-defined correlation constraints

of time series data. These constraints are common in real world applications because they represent

an upper level view of the result that is easier to understand and digest than the raw result itself.

This thesis addresses the limitations of current query refinement techniques that are oblivious

to the similarity of the refined queries to the users’ initial queries. Specifically, users’ initial (and

imprecise) queries are defined as anchor points for which the similarity of its corresponding refined

queries are computed over the whole refinement space. Consequently, the similarity-aware query

refinement problem is formulated as a search problem, which aims to balance the trade-off between

minimizing the deviation from satisfying a constraint on the query result, and maximizing the

similarity of the refined query to the initial one. Searching for a trade-off between satisfying a

constraint on the result of a query and maximizing the similarity introduces various challenges. A

common challenge shared by many query refinement problems is that finding an optimal trade-off
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involves inspecting and examining a huge search space of candidate refined queries, possibly

exponential. Further, evaluating candidate queries in these possibly exponential spaces to decide

whether they are optimal or not incurs expensive computational and I/O costs. Hence, simply applying

exhaustive solutions is not adequate since they hinder users’ exploration tasks and worsen the response

time. In this thesis, we discuss in detail our three key contributions, which address the challenges

above in the context of query refinement for aggregate and correlation constraints.

Firstly, we formally define the Similarity-aware, Aggregate-based Query Refinement problem,

in which users specify aggregate constraints on the result and prefer refined queries that are similar

to their initial ones. Then, we consider the special case of aggregate constraints, in which users

specify cardinality constraints on their queries results. For that special case, we propose innovative

Similarity-aware Query Refinement schemes (SAQR) which employ pruning techniques to avoid

unnecessary evaluations of candidate refined queries that are considered unpromising. We also show

the applicability of SAQR in a web-based application (ORange) which utilizes SAQR schemes for

refining selected areas based on cardinality constraints.

Secondly, we address the general case of aggregate constraints, in which multiple constraints

can be defined using SQL standard aggregate operators sum, avg, min, max. We present EAGER

schemes for this general case and propose efficient approximation and optimization techniques to

elevate the shortcomings of aggregates loose bounds that are used in pruning unpromising candidate

queries. Moreover, by comparison with related algorithms using real world datasets, we show the

efficiency gains of our schemes under different experimental parameters.

Thirdly, we formulate the Similarity-aware, Correlation-based Query Refinement problem, in

which users’ queries are refined to satisfy their pairwise correlation constraints of time series data.

We show the computational hardness of this problem, and propose the RELATE scheme to address

the associated challenges by utilizing the incremental property of correlation. Further, we propose

two-level pruning techniques for the RELATE scheme to minimize the associated computational and

I/O costs. These two techniques enable RELATE to avoid exhaustively traversing the search space by

pruning unqualified candidate queries, and avoid computing pairwise correlation of every time series

pair wherever possible. We demonstrate by experiments the performance gains of RELATE against

state-of-the-art algorithm with real and synthetic datasets.
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CHAPTER 1

Introduction

1.1 Overview

Users are easily overwhelmed by the sheer size of data in today’s large-scale databases found in

scientific and financial domains. Exploring these databases to make sense of the explored data and to

discover interesting insights (i.e., Data Exploration tasks) has been, and still is, a hideous and labour

intensive task for users [59, 52, 18, 63]. This is particularly true for non-expert users lacking a solid

background of the explored database [54, 113, 81, 42, 86].

Some three decades ago [23], the database research community noticed the limitation of traditional

DBMS in supporting users with their Data Exploration (DE) tasks. Since then, the community has

proposed and designed various solutions and techniques to assist users with their diverse exploration

tasks, with utmost effectiveness and efficiency, e.g., [25, 46, 15, 18, 127, 63, 58]. An instance of these

techniques is the Query Refinement (QR) technique [17].

Given a user’s query that returns unexpected results, QR techniques aim to refine this query

so that its results meet a user’s expectation. Specifically, the ultimate goal of QR techniques

is to automatically modify (refine) predicates of a query so that the results of the modified

(refined) query optimally meet the user’s expectation. Achieving the goal of QR techniques entails

massive computational and I/O costs, because finding an optimal refined query requires searching

a huge search space of possible refined queries. Consequently, many optimization algorithms have

been proposed to address the efficiency and the effectiveness aspects in achieving this goal, e.g.,

[78, 57, 118, 49, 83, 125, 39].

The aim of this thesis is to address the limitations of current QR techniques that are oblivious

to the similarity of the refined queries to users’ initial queries. In particular, we propose to define a

user’s initial query as an anchor point for which the similarity of its corresponding refined query is

computed over the whole refinement space. Consequently, we include the similarity as an objective
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when searching for a refined query to ultimately increase the user’s satisfaction with the refined

query. However, including this objective introduces multiple challenges (as shown in Section 1.3)

and requires new, innovative algorithms with efficient optimization techniques.

The rest of this chapter is organized as follows: Section 1.2 briefly introduces the general theme of

this thesis: Data Exploration. Then Section 1.3 discusses in detail the core topic of the thesis: Query

Refinement. Section 1.4 discusses the key contributions of this thesis, and Section 1.5 lists the outline

of the thesis.

1.2 Data Exploration

Improving the cycle of DE at different levels has recently become a major research direction for the

databases research community [63]. This subsection discusses the grounds for that direction and

illustrates the close links between QR and DE.

Informally, a data exploration task is a collection of ad-hoc, data-driven steps. The purpose of

these steps is to make sense of the explored database and to gain interesting insights that the user

would not otherwise know they exist in the first place [46, 15, 18, 127, 45]. Typically, users keep

repeating these data-driven steps until they are satisfied by what they have seen, or they run out of

resources (e.g., time) [15].

Unsurprisingly, traditional DBMS were not well designed for performing such DE tasks [63, 46,

128], as they were designed to provide well-structured storage for data and efficient data retrieval

for well formulated and DBMS optimized queries. In [52], it is noted that this problem has been

specifically identified over some three decades ago. [23] argued that DE (i.e., database usability) is

not well supported by traditional DBMS because it simply was not among the concerns of the market

at that time.

With recent advancements in data acquisition and storage technologies, today’s databases are

larger, more complex, and more difficult to explore. It is a fact that human perception of data remains

constant against the exponential increase of data’s volume [64], creating a large gap to be filled

with efficient and effective DE techniques. Further, the parallel increase of non-experts users (e.g.,

journalists who want to validate politicians’ claims through databases [126]), and web-based query

interfaces to public and scientific databases such as the ones hosted by Google’s BigQuery platform

and Sloan Digital Sky Surveys (SDSS), created an urgent need for innovative DE techniques.

Accordingly, researchers have proposed highly specialized and optimized DE techniques to

support users with their diverse exploration tasks. For example, some of these tasks are to recommend

relevant data [30, 29], to identify interesting subspaces of data that are highly deviated from the rest of
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data or a reference [124], to explain why outliers show up in the results [104, 129], to summarize and

present representative sets of the potentially huge result sets [28, 65], to formulate or refine queries

based on user-defined constraints [33, 119, 58, 125, 2].

1.3 Query Refinement

When querying a database, users often have some expectations of the queries results [16, 17]. For

instance, a user might expects her query result to contain specific tuples [118, 49], or her query

returns a non-empty result [90, 78]. When they formulate their queries and submit them to the DBMS,

however, it is highly unlikely they will be satisfied with the results. That is, users oftentimes formulate

wrong and imprecise queries due to their lack of a comprehensive knowledge of the data [80, 94],

giving them results which do not meet their expectations.

As a result of these imprecise queries, users often enter a laborious trial-and-error process where

they manually modify some predicates in their imprecise queries in the hope that these modifications

will render the result to meet their expectations. In some cases, it might be impossible to perform

this laborious manual process when there are usage limits on the DBMS (e.g., a maximum number

of queries per session or per user). Hence, Query Refinement (QR) techniques have been proposed

to address this problem by assisting users in refining their queries automatically so that the returned

results meet their expectations.

Informally, QR is "the process of refining a query when the answer to the query does not meet the

expectations of the user" [17]. In particular, the predicates of the query are automatically modified so

that the refined query result reflects what the user expected, i.e., her constraints. A constraint over a

query result is defined as the user’s expectation of her query result, and it can take different forms.

For example, a user might be expecting to see a specific tuple in the result but it was not among

the returned results [118, 49]. Hence, her constraint is for the query to return a result that contains

this specific tuple. Another common example is a user who expects her query to return any result,

but the query result is empty [85, 91]. Thus, her constraint is for the query to return a non-empty

result. A more common example is a user who expects her query to return a result that meets a certain

aggregate or correlation value, but the returned result fails to meet that value [125, 78]. Accordingly,

her constraint is for the query to return a result that meets this specific aggregate or correlation value.

While these examples refer to a constraint as a singular entity (e.g., one tuple, one aggregate value),

a constraint can contain multiple expectations of the same form, such as multiple tuples or multiple

aggregate values.

Intuitively, exploring a query result through an upper level view representation (e.g., aggregates)
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boosts users’ understanding of the raw result which contains individual tuples. That is, for database

users, aggregated data are easier to understand and digest than the raw data itself, and are favored in

DE tasks [37, 99, 104]. Accordingly, this thesis focuses on two specific forms of constraints defined

over a query result in the context of relational and time series data. Namely:

1. Aggregate Constraints (Section 1.3.1)

2. Correlation Constraints (Section 1.3.2)

Exploring the pervasive relational and time series data using the two aforementioned constraints

augments users’ understanding of their queries result and ultimately empowers them when exploring

unfamiliar data spaces.

In the following subsections, we see that automatically refining an imprecise query to meet one

of the above constraints is challenging because it requires examining a huge search space of refined

queries, possibly exponential. Exhaustively examining this search space is not practical and incurs

enormous CPU and I/O costs. Hence, a handful of techniques, e.g., [14, 79, 123], have been proposed

to efficiently navigate this exponential space to meet users’ constraints.

In light of these techniques and the two constraints mentioned above, we introduce two problems

and formally address them in this thesis. Specifically, in Section 1.3.1 we show the first problem

addressed by this thesis, in which users define aggregate constraints over the queries results. We

show the usefulness and the applications of this problem based on a real world dataset. Then, in

Section 1.3.2 we formally introduce the second problem addressed by this thesis in which users

specify correlation constraints for time series pairs. Similarly, we demonstrate the applicability of

this problem by an example. We also touch on the existing techniques proposed to address these two

problems and their limitations.

1.3.1 Similarity-aware Aggregate-based Query Refinement

Techniques for automatically refining a query to satisfy certain aggregate constraints provide effective

and efficient solutions to various problems. For instance, they can be used to address the too many/few

answers problem [3, 78], to enable richer expressions in querying a database [125, 17], and to generate

test queries for the purpose of database testing [79, 14].

An aggregate constraint G over a query result can be specified using an aggregate operator and

an attribute, i.e., agg(a), where agg() belongs to one of the standard SQL aggregation functions

count, sum, avg, min and max. Further, users can define multiple aggregate constraints, i.e., G =

{g1,g2, ...,gn} such that each gi ∈ G is a single aggregate constraint over the query result.
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Figure 1.1: Rectangular query (or Box query) is one of the common and basic queries used to explore
SDSS [112]

Refining a query is equivalent to applying modification operations on its predicates. These

modification operations can be adding or removing predicates, relaxing or contracting predicates,

replacing constants with other constants, joining with auxiliary tables through foreign keys, etc. As

an example, a single sided range predicate on a numerical attribute ai of this form Pi : ai ≤ xi can be

relaxed (respectively, contracted) as follows: ai ≤ xi
′, where xi

′ > xi (xi
′ < xi). Hence, it is easy to

observe the huge number of possible refined queries (i.e., candidate queries) that can be generated by

refining the predicates of an input query.

Let us consider the following example where specifying aggregate constraints can be effective

in exploring a real-world database: the widely known Sloan Digital Sky Server (SDSS) scientific

database 1. This database is the largest map of the Universe ever made that stores details of one third

of the stars and galaxies we see in the sky, and it is publicly available for anyone to explore using

different interfaces, one of which is the traditional SQL query language. However, exploring this

large-scale database might be an overwhelming obstacle for users, especially for those with no solid

background of the database [80].

Example 1.1. Using the SDSS database, a scientist wants to conduct a study of a particular

rectangular region in the sky by retrieving astronomical objects (e.g., stars) enclosed in that region

to study their properties. This type of query is one of the commonly submitted queries according to

the SDSS website (Figure 1.1). We assume that the scientist has limited resources to conduct this

study, e.g., time and energy, and at the same time the study has to be performed on at least 1000

1http://www.sdss.org
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astronomical objects to be genuine and valid.

The scientist, with her limited background of SDSS, formulates a Box query to select a rectangular

region2 in the sky and submit it to the DBMS. Her constraint on the result is for the number of returned

objects to be large enough for a valid study, yet small enough for a feasible study. Namely, her

constraint is count(*)=1000 objects. An example of this query is as follows:

I :SELECT * FROM SDSS.PhotoPrimary

WHERE ( ra ≥ 179.5 and ra ≤ 182.3 ) AND ( dec ≥ 1.24 and dec ≤ 1.86 );

Since it is very difficult to precisely set the values of the ra and dec predicates in query I that

guarantee a desired number of objects (because of user’s limited knowledge of SDSS database),

the returned result might not satisfy the scientist’s constraint. That is, the result might contain too

few objects thereby rendering the study unreliable3, or too many objects which will make the study

unachievable with the limited resources available to the scientist.

In Example 1.1 the scientist has no choice but to iteratively try different queries and manually

adjust the values for the coordinates ra and dec in her input query I, until reaching a result which

satisfies her constraint. This particular special case is the cardinality-based query refinement problem,

in which the aggregate constraint is equivalent to the cardinality of the result that can be computed

using the count() aggregation function.

In [14], it was formally proven that this problem is NP-Hard. By relaxing the constraint, i.e.,

accepting approximate solutions that are close to the cardinality constraint, a heuristic Hill Climbing

(HC) approach was developed by [14] to provide a refined query that minimizes the average relative

error of the cardinality constraint in an efficient manner. Similarly, [79] addressed a similar settings

of this problem where multiple cardinality constraints are defined for a query with m sub-expressions.

A practical solution called TQGen has been proposed in [79] to quickly generate a refined query that

optimally minimizes the sum squared logarithmic relative error of these constraints.

The interactive Semantic Windows approach [58] addresses a general case of this problem, in

which users can define any aggregate constraint over a query result. We refer to this general case

as the aggregate-based query refinement problem (AQR). Based on a cost-benefit model, a heuristic

best-first algorithm is presented in [58] and further optimized by an adaptive prefetching technique to

provide swift online results. Along the same lines, [12] presented the Package Query approach which

assists users to find a set of tuples that satisfy global constraints (i.e., aggregate constraints) defined

2using an equatorial coordinate system
3A small and incorrect sample size will lead to unreliable results [6]
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dec

ra I: user’s initial region of interest R*: a refined query far from the 

user’s region of interest

R’: a refined query close from the user’s 

region of interest

1.24 1.86

179.5

182.3

Figure 1.2: Two refined queries R∗ and R′ satisfy the constraint at almost the same level, but their
similarities to the user’s initial region of interest I are quite different

by the user. The proposed baseline algorithm in [12] translates these constraints into an Integer Linear

Programming (ILP) problem and utilizes off-the-shelf ILP solvers to find a solution. A more scalable

and efficient version is also proposed which relies on applying the ILP solvers on a representative set

of the data to find approximated solutions, such that these solutions are guaranteed to be close by a

factor to the baseline solutions.

Although the above techniques can be applied to solve the AQR problem efficiently, they exhibit

various limitations. Foremost, similarity to users’ input queries is completely neglected in the

techniques proposed in [14, 58, 12, 79]. Going back to Example 1.1, applying any of the above

techniques will help the scientist to achieve her goal, i.e., an optimal refined query R∗ which optimally

satisfies the cardinality constraint. However, there is no consideration given to the user’s preference

expressed in her input query I. That is, while R∗ optimally satisfies her constraint, it might be very far

from her initial region of interest, i.e., query I. At the same time, as shown in Figure 1.2 above, there

might be another refined query R′ that also satisfies her constraint (almost at the same level as R∗) but

is very close to her initial region of interest, i.e., input query I. Therefore, suggesting R′ instead of R∗

as the refined query increases the users’ satisfaction with the results because R′ is more similar to I

than R∗.

Extending these techniques to include similarity is not practicable since it introduces multiple

challenges. For instance, the HC approach in [14] can be modified to choose a refinement step

that reduces the relative error and dissimilarity to the input query at the same time. However, this

straightforward modification will render HC vulnerable to floundering about a local minima. The

Semantic Windows approach in [58] can also be modified to include similarity to an input user’s

query. Specifically, the dissimilarity of a cell to a query can be included in the cost-benefit model.

Nonetheless, [58] represents the search space as one flat grid with a fixed granularity. Hence, the
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number of cells at this approximated search space might be extremely huge when using a small value

for granularity. Adding these cells to the queue and examining them exhaustively (as SW does) incurs

a lot of I/O and CPU costs.

The techniques proposed in [78, 123] address the AQR problem and provide refined queries close

from users’ input queries, but they also have their own limitations. For instance, the SnS framework

[78] provides a manual algorithm for refining a query. It is manual in the sense that users are iteratively

asked to select a predicate value that is most preferred by them, hence capturing similarity manually.

Other approaches such as the ACQUIRE and SAUNA [123, 57] include similarity to users’ input

queries in the refinement process and provide fully automatic algorithms. However, they ignore the

I/O cost involved in refining a query and focus on the computational costs. For example, ACQUIRE

focuses only on efficiently computing the aggregate value for a candidate query by utilizing the

additive property of the aggregate. It also shares the limitation found in the SW approach: the search

space is represented as one flat grid by dividing each dimension into a fixed number of partitions,

resulting in a huge number of candidate queries that are exhaustively probed during the refinement

process. Similarly, SAUNA requires each candidate query to be probed in order to compute its

dissimilarity to the input query.

In Chapter 3 we formally address the inclusion of similarity to users’ input queries in the AQR

problem. Including similarity requires new methods to represent the search space, and new pruning

techniques to efficiently navigate this space and find the optimal refined query. For that, we propose

a suite of algorithms with optimization techniques to overcome the efficiency challenges involved in

finding an optimal query. We also compare our algorithms with the HC and TQGen approaches to

validate our algorithms efficiency and effectiveness.

Next, we introduce the second type of constraints which users can define to explore time series

data.

1.3.2 Similarity-aware Correlation-based Query Refinement

A common thread of data exploration is querying sequences of values (e.g., time series data) to

perform various tasks [97, 76, 72]. For instance, a user can query sub-intervals of time series data then

compute the pairwise correlation of all pairs of time series to find correlated pairs [70, 71, 89, 100, 39]

or detect patterns and anomalies [87, 102].

In some cases, users select time series data within a specific time sub-interval to compute the

pairwise correlation values for all time series pairs, e.g., [70, 71, 89]. We propose to define the

pairwise correlation values as pairwise correlation constraints, such that a user’s query has to satisfy
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timestamp

6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00

T1 0.2 0.3 0.3 0.5 0.8 0.9 0.8 0.9 0.7 0.8 0.4 0.3 0.3 0.2 0.1

T2 0.15 0.2 0.15 0.22 0.41 0.54 0.48 0.49 0.36 0.43 0.19 0.17 0.16 0.11 0.06

T3 0.05 0.1 0.15 0.28 0.21 0.13 0.32 0.41 0.34 0.37 0.21 0.13 0.14 0.09 0.04

Figure 1.3: Relation R stores hourly CPU load readings of three connected servers T1,T2 and T3 in a
hypothetical data centre
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Figure 1.4: 2-D visualization of R. The abnormal behaviour is between 9 AM and 12 PM: T1’s load
increases but T2’s or T3’s load does not increase (i.e., correlation close from zero)

these constraints. Specifically, in the Correlation-based Query Refinement problem (CQR), a user’s

input query is refined (i.e., its sub-interval is refined) such that the result of the refined query satisfies

user-supplied pairwise correlation constraints for all time series pairs.

The following example illustrates how the CQR problem can be of use for users to automatically

refine their queries to satisfy correlation constraints. This example is fairly prevalent in data centre

management systems [73] where users analyze servers loads collectively (e.g., Queries 3 and 4

in [102]) using the correlation coefficient [114, 87, 102]. Moreover, the example will help in

understanding the associated challenges for achieving the CQR problem goal.

Example 1.2. Assume a hypothetical data centre with three connected servers T1,T2,T3, where T1 is

responsible for forwarding incoming requests to T2 and T3 as evenly as possible. The hourly CPU

load readings of these servers are stored in a database relation R, as shown in Figure 1.3.

An admin wants to analyze the loads of these servers to identify any abnormal behaviour based on

the pairwise correlation of the servers loads. Let this abnormal behaviour be: T1’s load increases but

T2’s or T3’s load simultaneously does not increase (i.e., negative correlation). Conversely, the normal

behaviour of these servers is for T2 and T3 loads to increase simultaneously as T1’s load increases

(i.e., positive correlation).

Typically, a 2-D visualization of time series data is utilized for swift insights [133], such as the
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one shown in Figure 1.4. While the process of visually identifying abnormal behaviours is somehow

easy in this toy example as there are three time series in R, it should be clear that this process becomes

more challenging when there are more series.

Consequently, the admin executes a selection query over R and then computes the pairwise

correlation of the pairs (T1,T2), (T1,T3) and (T2,T3) from the query output. These pairs and their

correlation values are collectively called a correlation matrix M.

Let the admin’s initial query be:

Q1: SELECT * FROM R

WHERE timestamp ≤ 20 and timestamp ≥ 6;

The correlation matrix MQ1 for Q1 is shown in Figure 1.5.

It appears that no abnormal behaviour exists within the results of Q1: the loads of T2 and T3

follow the same pattern as their parent T1, which the high pairwise correlation values in MQ1 confirm.

More precisely, the normalized sum of absolute difference (L1-norm) between MQ1 and Mabn is high

(≈0.96), where Mabn represents the abnormal behaviour in pairwise correlation values, as illustrated

in Figure 1.5.

Nonetheless, between 9 and 12 there is evidence of an abnormal behaviour: T3’s load breaks the

pattern and decreases while T1’s load increases. This abnormal pattern is captured by the following

query:

Q2: SELECT * FROM R

WHERE timestamp ≤ 12 and timestamp ≥ 9;

Its matrix MQ2 is shown in Figure 1.5 as well. Figure 1.6 confirms that Q2’s correlation matrix

is the closest to the user-defined abnormal behaviour, i.e., among all queries, MQ2 has the minimum

sum of absolute difference to Mabn ≈0.74 .

In Example 1.2, it is assumed that the abnormal behaviour is well-known by the admin, e.g.,

pairwise correlation values close from -1 indicate an abnormal behaviour for the servers, as shown in

Mabn. However, the time sub-interval (i.e., Q2) that is the closest to this abnormal behaviour is not

known to the admin. Further, it is assumed that Q1 in Example 1.2 represents the admin’s initial guess

of where that abnormal behaviour is located.

To find Q2 though, the admin is required to manually refine her input query (i.e., Q1) by modifying

the timestamp predicate, then compute the pairwise correlation values (i.e., correlation matrix) from

10
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T1 1 0.8
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T1 -1 -1

T2 -1

T3

Mabn

Figure 1.5: Correlation matrix of Q1, Q2 and Mabn. Mabn represents an abnormal behaviour where
T1,T2 and T3 have negative correlation
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Figure 1.6: A subset of candidate queries and their normalized sum of absolute difference from the
abnormal behaviour Mabn. Q2 = Q[9,12] has the minimum difference to the abnormal behaviour

the results of all possible refined candidate queries.

Manually examining all possible candidate queries and computing the correlation matrices out

of their results to find Q2 is obviously not a practical solution. There is a total of m(m−1)
2 candidate

queries, and this number increases quadratically with the length of the time series m. Manually

examining these queries is a labour intensive task and incurs tremendous I/O and CPU costs. For

instance, it takes almost two hours to compute a single matrix for 10k time series [87] using a

traditional PC.

A more suitable alternative is for the user to specify the target correlation matrix (e.g., Mabn in

Example 1.2) that represents an abnormal behaviour, and an efficient solution automatically finds

the query (i.e., sub-interval) that is the closest to the target. This partially resembles the Query

Reverse Engineering problem [119, 120, 115], but the pairwise correlation constraints and the time

series data introduce unique challenges which cannot be addressed by the techniques proposed there.

For instance, [119] requires that the query result must not contain an arithmetic expression such
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as correlation, whereas [115] optimization techniques are based on series of rules using aggregates

properties that are not applicable to correlation.

There is a large body of work [70, 107, 87, 39] which focuses on efficiently reporting time

series pairs that are above a certain correlation threshold. This body of work is tightly related to

CQR problem because reporting correlated pairs requires computing correlation efficiently, which

is also a core requirement in the CQR problem. For example, the techniques in [70, 71] build

on the observation of [107] where correlation can be computed incrementally to report the longest

sub-interval of correlated pairs. These techniques however are a special case of CQR, because there

is only one correlation constraint for all time series pairs. Moreover, these techniques aim to report

all time series that are correlated with a given time series, i.e., bi-variant analysis, whereas the CQR

problem falls into the multi-variant analysis category, in which the correlation of all pairs of time

series are reported and compared [56, 41].

In the multi-variant analysis category, the AEGIS framework [39] has been proposed for fast

computation of correlation in a distributed environment. This framework goal is to report all pairs

of all time series that are correlated above a certain correlation constraint, i.e., AEGIS assumes only

one correlation constraint for all pairs. Further, AEGIS assumes the length of the sub-interval is

known in advance, e.g., given by a user. Based on these two assumptions, the framework partitions

the time series such that the pairs that are potentially correlated are contained in a single partition, to

control the communication cost in a distributed environment. Extending this framework to address

the general case in CQR where neither of the two assumptions are enforced is not applicable.

A similar work is presented in [87] for computing pairwise correlation of a very large number

of series to automatically discover anomalies. However, it also enforces the same assumptions as in

[39]: a single correlation constraint for all pairs and the sub-interval is known in advance as well.

A more recent work [128] proposes a general framework to accelerate the computation of a

number of statistics such as correlation. This framework utilizes the natural overlap in users’

exploratory queries to speedup the computation of statistics by synthesizing cached statistics that

were previously computed. This is quite similar to the incremental computation of correlation method

proposed in [107].

In Chapter 4, we address the Similarity-aware, Correlation-based Query Refinement problem,

where users can specify similarity and correlation constraints. Given these constraints, we propose

efficient algorithms and pruning techniques that overcome the efficiency challenges accompanied in

solving this problem. We also compare the results of our algorithms to state-of-the-art algorithm

using real and synthetic datasets and discuss the results under different parameters settings.
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1.3.3 Challenges

Examples 1.1 and 1.2 briefly introduce the challenges related to the Similarity-aware,

Aggregate-based and Similarity-aware, Correlation-based Query Refinement problems. Challenges

in these problems can be classified as efficiency challenges, or effectiveness challenges.

Efficiency challenges in these two problems originate from navigating a huge search space to

find an optimal refined query that satisfies the user-defined constraints. This is a common challenge

shared by many data exploration problems where finding an optimal solution involves inspecting and

examining a huge search space, possibly exponential, in a brute-force approach. Further, evaluating

candidate solutions in these exponential spaces to decide whether they are optimal or not, incurs

expensive computational and I/O costs. Hence, simply applying exhaustive solutions is not adequate

since they hinder users’ exploration tasks and lengthen the response time. Accordingly, the efficiency

challenges of these two problems necessitate the design of innovative algorithms that can utilize

properties of the constraints and the search space to provide efficient solutions. For instance, the

monotonic property of aggregate operators enables an algorithm to prune unqualified queries and

avoid evaluating them using aggregate bounds that are computed from previously evaluated candidate

queries. Moreover, the similarity constraint enables an algorithm to early abandon evaluating a

candidate query, leading to signification savings of I/O costs.

For some tasks (e.g., algorithms that translate from English to Chinese) humans can easily decide

which algorithm produced the most effective output. However, modeling the process of evaluating the

effectiveness of such algorithms is quite challenging. In particular, the effectiveness challenges in the

two problems addressed in this thesis relate to measuring the similarity of a solution to the user’s input

query and user’s satisfaction of the refined query. That is, how to model users’ preferences so that an

algorithm can automatically consider the dissimilarity of a candidate query to the input query in the

refinement process. One extreme approach is to fully incorporate the user in the refinement process

by asking her to label each candidate refined query based on her satisfaction of the refined query

result. Although this can guarantee maximum user satisfaction with the end result, it adds a whole

new substantial burden on users which can be avoided without sacrificing the solution effectiveness.

Another approach which does not require users’ feedback is to automatically infer the similarity of

a candidate query. This can be done systematically by comparing the results of a candidate query to

the input query results. However, this approach implies retrieving the results of each candidate query,

which could entail high CPU and I/O costs since the number of candidate queries can be huge.

Chapters 3 and 4 present our proposed innovative techniques and algorithms which address

the efficiency and effectiveness challenges involved in achieving the goals of the Similarity-aware,

13



CHAPTER 1: INTRODUCTION

Aggregate-based and Similarity-aware, Correlation-based Query Refinement problems. The proposed

algorithms utilize specific properties of the constraints to prune unqualified candidate queries and

employ various techniques to optimize the search process. Further, these algorithms use simple,

automatic and effective methods to swiftly infer the similarity of a candidate query while searching

for the optimal solution.

1.4 Contributions

Motivated by the efficiency and effectiveness challenges mentioned above that are manifested in the

exploration of relational and sequential data, we have proposed a suite of optimized schemes and

algorithms which guide users in refining their imprecise queries based on aggregate and correlation

constraints. Specifically, this thesis makes the following key contributions:

• For a special case of aggregate constraints, i.e., cardinality of the answer, Chapter 3, Section 3.3

proposes the SAQR schemes. SAQR schemes partition the search space using a space-based

partitioning method to transform it into a multi-level grid with equal-width, non-overlapping

cells. Each intersection in this grid represents a candidate refined query, and one of these

candidates optimally minimizes the relative error in terms of the cardinality constraint and the

dissimilarity to the input query. Hence, SAQR follows a Top-K approach but at the query-level,

not the tuple-level, to find this optimal candidate query, with respect of the new partitioned

search space. In a nutshell, SAQR schemes utilize similarity-based and cardinality-based

properties to prune and avoid evaluating unqualified candidates when searching for the

optimally refined query, without any approximation.

• The special case of cardinality was then extended to allow the constraints to be any multiple

aggregate constraints, i.e., count, sum, avg, min, max for which the EAGER scheme has

been proposed with its approximation techniques in Chapter 3, Section 3.4. EAGER schemes

address the limitation of loose bounds for some aggregates, the case of having multiple

constraints in one query, and reduce the cost incurred in the search by strategically materializing

parts of the search space.

• The applicability of SAQR schemes are demonstrated by a web-based application (ORange)

presented in Chapter 3, Section 3.5. ORange was designed as a tool to efficiently guide planners

in allocating services zones that optimally satisfy a certain cardinality constraint.

• Next, the Similarity-aware, Correlation-based Query Refinement problem is introduced in
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Chapter 4, Section 4.2.1 which generalizes on previous problems addressed in literature in

two ways: by specifying a correlation constraint for each pair of time series, and by inclusion

of similarity to users’ input queries in refinement.

• Then in Chapter 4, Section 4.3 the RELATE schemes are introduced as efficient solutions to

this refinement problem. RELATE schemes extend state-of-the-art algorithms to incrementally

compute the correlation for all pairs of time series. To achieve that incremental computation,

RELATE applies two classical tree traversal methods, BFS and DFS, to visit the candidate

queries in a specific order that enables incremental computation of correlation.

• Further, RELATE optimizes the search process by pruning unqualified candidate queries via

monotonic properties at two levels, query similarity level, and pairwise correlation level, as

explained in Chapter 4, Section 4.3.5.

1.5 Thesis Outline

This thesis is organized as follows: in Chapter 2 we introduce the preliminaries of query

refinement and elaborate more on the related work. Chapter 3 presents our first contribution

for the Similarity-aware, Aggregate-based Query Refinement problem. Specifically, Section 3.3

provides innovative schemes called SAQR to efficiently refine queries based on a special case

of aggregate constraints, i.e., cardinality constraints on the result. Then, in Section 3.4, SAQR

Schemes are extended to address the general case of the Similarity-aware, Aggregate-based Query

Refinement problem where SQL standard aggregate operators sum, avg, min, max can be defined

as constraints, and we propose efficient approximation and optimization techniques and compare them

to related algorithms. Section 3.5 presents a web-based application ORange which employs SAQR

schemes for refining selected areas based on cardinality constraints.

In Chapter 4, we formulate the Similarity-aware, Correlation-based Query Refinement problem

and address its computational hardness by proposing the RELATE schemes. Section 4.3 shows

the optimization techniques for RELATE schemes which include incremental computations of

correlation, pruning candidate queries based on similarity constraints and pairwise correlation

pruning. Finally, Chapter 5 concludes this thesis and provides suggestions for future studies in the

area of query refinement.
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CHAPTER 2

Literature Review

This chapter starts with a broad overview of the data exploration (DE) techniques discussed in recent

literature, which were proposed to facilitate efficient and effective knowledge extraction. Then, in

Section 2.2 it narrows down the discussion to one area of these techniques, Query Refinement (QR)

techniques, which is the scope of this thesis.

Section 2.2 broadly divides the discussion on QR techniques based on the refinement constraints.

Initially, Section 2.2.1 reviews several QR techniques that address various refinement constraints.

Then, Sections 2.2.2 and 2.2.3 explore in detail the techniques proposed to address similar constraints

and problems to those in this thesis: Similarity-aware, Aggregate-based Query Refinement and

Similarity-aware, Correlation-based Query Refinement problems. We investigate the shortcomings

of these techniques in terms of efficiency and effectiveness, and their limitations when including

similarity in the refinement process.

2.1 Data Exploration Techniques

DE is central for data-driven applications in which users interact and explore data through a sequence

of related queries to gain deep insights [15, 18, 127]. This new form of interaction has resulted in

the design of various DE techniques capable of guiding users through the data space with utmost

efficiency and effectiveness [46].

Because "one size does not fit all", these techniques are application-oriented. That is, they are

highly specialized and optimized for certain data exploration objectives. For example, some of these

objectives are to recommend relevant data [30, 29], to identify interesting subspaces of data that are

highly deviated from the rest of data or a reference [124], to explain why outliers show up in the

results [104, 129], to summarize and present representative sets of the potentially huge result sets

[28, 65], and to formulate or refine queries based on user-defined constraints [33, 119, 58, 125, 2].
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Although these techniques have different objectives, they share commonality in their assumptions

and optimization methods. One common assumption is that users are unfamiliar with the data space

and aim to efficiently extract deep and interesting insights from their data with no prior assumptions.

There are several optimization methods that are common among these techniques as well, such as

incremental computations, materialization, sharing of computations, pruning based on properties

and bounds, caching, etc. Next, we expatiate on these techniques then dwell on Query Refinement

techniques as this is the scope of this thesis.

Data Recommendation: Recommending relevant data based on users’ queries helps users to

understand their queries better. The YMALDB framework [30] and the AIMQ approach [92, 93], for

instance, allow users to discover highly correlated and similar tuples to the original query’s results,

although these discovered tuples are not among the original query’s results. At the other extreme,

SeeDB [124] presents and recommends alternative queries (i.e., views) that are highly deviated from

a reference query’s result. Such alternative queries are considered interesting and insightful for users.

Explaining Outliers in Queries’ Results: Explaining outliers in queries results is another

application-oriented DE technique that aims to give meaningful explanations which cause outliers

to appear in the results. These explanations can be a set of tuples that must be removed from the

result or modifications to the original query’s predicates [129, 104].

Query Results Summarization: Summarizing queries’ results assists users when exploring

large-scale data, such as scientific and financial data. Specifically, because users’ exploratory

queries will most likely return large results, deriving insights from these large results becomes an

overwhelming obstacle. Techniques which summarize and select small representatives out of the raw

and large results elevate this obstacle and efficiently enhance users understanding of their queries’

results. Two well-known techniques which follow this direction are the traditional Skyline [9] and

Top-K [47] techniques. Other recent emerging techniques such as Regret Minimization [95, 96] and

result Diversification [28, 65] have also been shown to be effective in promoting users’ understanding

of their queries’ results. Another body of work [55] enhances the well-known drill-down operation

in OLAP by showing rules along side the output. These rules represent the interesting aspects of the

explored data.

Query Formulation: Query formulation techniques are orthogonal to QR techniques. Their goal

is to efficiently and effectively guide users in locating their interests within a large data space by

formulating a query from scratch, i.e., users do not provide input queries as traditionally assumed in

QR techniques. That goal can be achieved by following different approaches. For example, in some

cases users provide a set of tuples (i.e., result of an arbitrary query) for which they want a set of

queries that return these exact tuples [119]. Discovering these queries increases users’ understanding
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No Constraint Informal Definition Related Works

1 Query’s result size≥K,≤K,
or > 0

Given that Q returns too-few,
too-many or an empty result,
minimally refine Q to Q′ to
satisfy the constraint

[90, 66, 83, 85, 53, 106]

2 Query’s result contains a set
of tuples T

Formulate a query Q based
on given example tuples T

[120, 119, 25, 69, 26, 110]

3 Remove outliers O in query’s
result

Given Q has outliers O in
its results, refine Q to Q′ to
remove these outliers O

[104, 105, 129, 109]

4 Remove unexpected tuples U
from query’s result

Refine Q to Q′ so that Q′

removes unexpected tuples U
[118, 49, 48, 16]

5 Query’s result satisfies
aggregate constraint G

Refine query Q to Q′ such
that Q′ satisfies constraint G

[78, 17, 2, 123, 125, 10, 11,
12, 57, 79, 14, 58]

Table 2.1: Summary of some QR techniques based on refinement constraints

of their databases’ schema, since they provide alternative paths that are equivalent to that arbitrary

query [120].

In other cases where users are unable to provide such tuples of interests, techniques such as AIDE

[25] help in this regard by interactively steering users towards interesting data within a massive data

space. To enable such interactive steering, AIDE carefully selects sample tuples for users to label as

relevant or irrelevant. Then AIDE updates a classification model to further select sample tuples for

users to label. Once users end this interactive steering process, AIDE formulates a query out of the

classification model which captures users’ interests.

2.2 Query Refinement Techniques

Informally, QR is "the process of refining a query when the answer to the query does not meet the

expectations of the user" [17]. In particular, the predicates of the query are automatically refined so

that the query’s result reflects what the user expected, i.e., her constraints.

Refining predicates is tantamount to applying a set of modification operations on the predicates.

These modification operations can be for example adding or dropping existing predicates, relaxing

constants into ranges, narrowing ranges into constants, joining with auxiliary tables through foreign

keys, etc.

Next, we review the literature of QR techniques based on the refinement constraints, which are

certainly proposed to address a specific need or to solve a problem faced by users in DE tasks. We also
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review the search and optimizations methods in these techniques. Table 2.1 above lists a summary of

the discussed query refinement techniques broadly classified by the refinement constraints.

2.2.1 Query Refinement Techniques -Various Constraints

Too-few, Too-many, and Empty Answers Problems

In data exploration settings, it is not uncommon for users to experience the too-many, too-few or

empty answers problems with their exploratory queries. These queries are often restrictive and

narrow (too-few answers problem), liberal and under-specified (too-many answers problem), or they

are unsuccessful in returning any answers at all (empty answers problem).

The empty answer problem is a special case of the too-few answers problem. These two problems

aim to refine the original query into a new one, by applying modification operations on the predicates,

so that the answer of the new query is likely to contain the tuples that interest the user. In [85,

83] they followed an interactive approach to solve this problem, i.e., users are asked for feedback

on possible relaxation proposals for their queries. They proposed a probabilistic framework with

exact and approximate algorithms which aim to refine a conjunctive query with atomic predicates by

dropping some of these predicates (i.e., relaxation sequences) to achieve a non-empty-answer. To

do that, all relaxation sequences are represented in a tree, rooted by the empty-answer query, and

scored by the probability that a user accepts a proposed relaxation. Then, to find the best relaxation

sequence, the FullTree [85] algorithm constructs this tree in full and recursively traverses it in a

depth-first mode. Since this algorithm is computationally expensive and inappropriate for exploration

settings, an optimized algorithm called FastOpt was proposed to minimize the construction cost of

this tree by pruning branches of it using lower and upper bounds of the probability scores. These

algorithms though were proposed to work with Boolean databases, i.e., attributes with 0s or 1s. They

cannot be applied on databases that contain categorical and numerical attributes directly.

Using Machine Learning algorithms, [90, 91] developed LOQR: an online algorithm to relax a

failing query (i.e., a query with an empty answer) with disjunctive predicates. The algorithm learns

a decision rule for each attribute used in a predicate, then converts the learned rules into statements.

The statements are then scored based on their similarity to the disjunctive predicates of the original

query, and the most similar ones are used by LOQR to relax the predicates of the failing query.

The techniques in [106] also use Machine Leaning algorithms to address the too-many answers

problem. They adopted the principles of the faceted search paradigm on structured databases, and

proposed to take advantage of associated rich meta-data that comes in the form of tables, attributes,

value ranges, etc. As an alternative method to ranked retrieval, faceted search was proposed to drill
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down and zoom in on the tuples that interest the user, with least user effort. This search method

is analogous to a dialogue with the user: a series of questions about the attributes are asked by the

system, for which the user replies with a value. The result of this dialogue is a decision tree, where

each node is an attribute and each edge leading out of it is assigned a value from that attribute’s

domain. The leaves of this tree are the tuples in the database, and a path from a leaf node up to the

root is the dialogue the user had with the system, hence, the user effort is the average height of all

paths in the tree.

Another work in [66] proposed a framework for relaxing a failing query that involves selection

and join conditions. The framework defines the relaxation skyline as the set of all joined tuples that

are not dominated by any other joined tuples. These skyline joined tuples are found by applying

two steps: a join step (i.e., nested-loop join or hash-based join), and a skyline-computing step (i.e,

block-nested-loops algorithm). To compute the skyline for a query with join conditions, it is assumed

that there is a multi-dimensional indexing structure (e.g., R-Tree) for each attribute in the selection

and join conditions. Then, an algorithm called MIDIR applies the two steps above (i.e., join and

skyline-computing steps) on the objects in the R-Trees in a top-down fashion.

It is worth mentioning that the well-known Top-K [20, 47] and Skyline [22, 9, 44] operators

were proposed to assist users in overcoming the too-many answers problem as well. With the help

of a scoring function that scores all dimensions in a database, Top-K techniques rank the tuples of

a query’s result (i.e., the too-many answers) by aggregating the dimension’s scores, then efficiently

retrieve the top K scored ones to the user. On the other hand, the Skyline operator requires no scoring

function to be defined for each dimension. Given a query that returns too many tuples, the Skyline

operator returns the set of tuples that are not dominated by any other tuple in the query’s result.

While the aforementioned techniques provide efficient and effective solutions in terms of their

constraints, they partially address the defined constraints in the AQR problem. That is, these

techniques provide no guarantee on achieving a target aggregate value, which is the goal of the AQR

problem. Further, some of these techniques are limited to only one type of aggregates, i.e., count

[90, 91], or can only be applied to Boolean databases [85, 83].

The ’Query by Examples’ Problem

The problem of formulating a query using user-supplied tuples [120, 119, 5] or user-labelled tuples

[25] has great applications in data exploration, and it is related, as well, to query refinement problems

from the efficiency and effectiveness challenges sides. Although users do not provide failing queries

to be refined, the process of formulating a query given tuples of interest requires traversing a huge
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query space to find an optimal query. Further, determining the effectiveness of a solution seems

challenging: either users are continuously asked for their feedback, or it is determined using the

user-supplied information in the beginning of the query formulation process.

The applications of these formulated queries are diverse. One obvious application is to reinforce

users’ understanding of their databases schema by providing different paths (i.e., queries) that lead

to tuples of interest. These queries might be simpler to understand, and uncover hidden relationships

within complex databases. To find these queries, [119] models this problem as a data classification

problem, and proposes a data-driven approach called TALOS. In TALOS, users provide a set of tuples

(i.e., result of an arbitrarily query). Then, TALOS classifies the database tuples either positive or

negative: if a tuple belongs to the result that the user provided, then it is classified positive, otherwise

it is classified negative. TALOS then builds a decision tree based on these two classifications by

iteratively splitting the tuples based on attributes until tuples in each leaf node are all positive or

negative. The best split of an attribute is chosen as the attribute which splitting value maximizes

a goodness criteria (e.g., entropy or Gini Index). Finally, the queries are formulated from the

root-to-positive leaf nodes paths in the decision tree, and are ranked based on two variations of

the popular F-measure metric. Since this approach incurs high computation costs, TALOS uses

optimization techniques, such as optimizing joins with pre-computed join indices, to obtain a compact

list of all joined tuples to efficiently construct the decision tree.

By considering queries with foreign key join conditions only, the work in [110] proposes a system

with efficient techniques that produce valid queries for a given set of example tuples. A query is

said to be valid if each example tuple appears in the result of this formulated query. The system has

two main components. The first one is responsible for exhaustively formulating all candidate queries.

Then, these queries are fed to the second component that is in charge of verifying these queries. This

component applies different optimization techniques to speed up this process. For instance, it utilizes

the dependency properties within these queries, i.e., if a query is pruned, then all of its sub-queries

are also pruned, since they are more restrictive and cannot contain the tuples that their parent does

not contain in the first place. A major limitation of their system is that it does not consider selection

predicates for the formulated query, only join predicates based on foreign keys.

Another application for formulating a query using tuples is to steer users towards interesting

regions in their data, then formulate queries that retrieve these regions [25]. For instance, AIDE

[24] exploits sample selection and Machine Learning techniques in an interactive fashion to carefully

select sample tuples for users to label, and continuously updates a model (i.e., a decision tree) that

learns users interest. When the user decide to terminate the exploration process, that decision tree

can be translated into a query. AIDE’s main goal is to minimize the number of sample tuples that
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users have to label relevant or irrelevant. To achieve that, AIDE follows three main phases. First, it

extracts sample tuples for users to label by splitting each dimension into equal-width cells. Then,

for each cell, the user is asked to label the tuple that is closer to the virtual centre of that cell.

This process is repeated by dividing the cells that contain irrelevant tuples into finer-grained cells,

since they might partially overlap with relevant areas. A classification model (i.e., decision tree) is

repetitively fed with these tuples to learn the user interest and predicate relevant and irrelevant areas.

The second phase is to polish the model by leveraging tuples that are labeled irrelevant by the user

but are contained in a relevant area that was predicated by the model (i.e., false positivists), and

tuples labeled relevant by the user but predicated to be irrelevant by the model (false negatives). The

third and final phase is to refine the boundaries of these predicated relevant and irrelevant areas by

selecting a much smaller sample size close to the boundaries for users to label. Since these three

phases are dependent on extracting samples from the data, which can be an expensive overhead,

AIDE applies two optimization techniques in that context. It uses a small sample of data, rather than

the original data, generated using a simple random sampling approach that picks each tuple with the

same probability. Also, it adaptively reduces the number of sample tuples to be labelled by users by

remembering (at each iteration) the boundaries changes for each predicted area in the decision tree.

Smaller changes between two consecutive iterations for a predicated area means the model has already

achieved a reasonable approximation of that area, hence, new tuples most likely will not improve this

area.

A slight modification of this problem is presented in [82, 84], in which users provide an exemplar

query and the goal is to find other queries that have similar structures. This case is not uncommon in

many practical scenarios where users are not aware of their interests’ characteristics and structures.

The proposed approach FastXQ in [82] represents the exemplar query as a connected sub-graph, and

aims to efficiently find all isomorphic sub-graphs contained in the data graph by pruning nodes that

are unqualified to take part in any candidate isomorphic sub-graph. To significantly reduce the search

space, FastXQ represents the neighbourhood of every node (for both the exemplar query sub-graph

and data graph) in a compact way, to avoid visiting all the nodes in the data graph.

The addressed refinement constraints in the above works are fundamentally different than the

constraints defined in the AQR problem. Specifically, these constraints are defined on the individual

tuples of the queries results, while in the AQR problem the constraints are defined over all tuples of

the results. Hence, extending these works to address the constraints in AQR is not applicable.
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Explain Outliers in Query Answer Problem

The related works in [104, 105, 129] consider the problem of finding explanations for outliers in their

query answers. An example of these outliers can be an aggregate value that is abnormally different

from the rest of the values in an answer produced by a group-by SQL query. The explanations that

users are interested in are actually predicates that are added or removed from the original query

(i.e., query refinement), which cause these outliers to disappear from the answer (i.e., refinement

constraint). The work presented in [129] proposes a system called Scorpion to find these predicates

by applying different partitioning and merging algorithms optimized by aggregate properties such

as incrementally computing aggregate values, and pruning the search space using the monotonicity

property of aggregate operators. In Scorpion, given a group-by query with P predicates which

produces n aggregate values {g1,g2, ...,gn}, the user is asked to populate two disjoint sets H and

O from gi,1 ≤ i ≤ n to flag the outlier values. Further, the user specifies an error vector V for O,

where vi ∈ V can either be 1 if gi ∈ O is high, or -1 if gi ∈ O is too low. Hence, the aim is to find

the best predicate p∗ ∈ P which explains the outlier values in O. To quantify that, a measure called

Predicate Influence (PI) is proposed. The influence of a predicate p on an outlier aggregate value g is

simply a ratio:

PI(p) = v
∆g
|p(g)|

where ∆g represents the change in the aggregate value after dropping predicate p, and |p(g)| is the

number of tuples in g that satisfy p. Recall that Scorpion aims to find the best predicate based on

the PI definition. [129] formally defines the Influential Predicates problem, which aims to find the

maximum influential predicate p∗:

p∗ = argmax(in f (p)) , p ∈ P

where in f (p) is defined as the average influences of p on the outlier values in O, minus the maximum

influence of p among the holdout values in H. To find p∗, Scorpion performs two steps: partitioning

and then merging. The first step exhaustively enumerates a list of all possible predicates P, and

ranks them by their influence on O and H in a descending order. In the second step, Scorpion

repeatedly merges adjacent predicates as long as the merging increases the influence. To address

the efficiency challenges of these two steps, Scorpion utilizes several traditional properties of the

aggregate operators, so they can be incrementally computed (i.e., additive operators) and they are

monotonic, to optimize the partitioning and merging steps. For instance, Scorpion benefits from

computing the aggregate value of a predicate incrementally from cached data in two ways: when
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ranking the predicates in the first step, and when merging the predicates in the second step to evaluate

the influence of the merged predicates.

Along the same lines of the Influential Predicates problem, [104] introduces a framework to

explain outliers found in the result of multiple queries with foreign key joins. This type of complex

queries enlarges the challenges in searching for explanations as the search space of predicates

increases too. Similar to [129], an explanation e is a conjunction of atomic predicates on attributes,

and outliers are aggregate values found in the result of a complex query. Although, different to [129],

the framework proposes two methods to measure how well an explanation e is able to explain the

outlier results. The first one is termed degree of explanation by aggregation:

e(v,Q) =

−Q(e), if v = −1

Q(e), if v = 1

If the user believes the aggregate in the query’s result is too high (i.e., v=1), then the explanations (i.e.,

predicates) that produce the highest aggregate values are the top explanations for this high aggregate

value, and vice versa. The second measure is related to their key novel contribution in this framework:

the complex relationship between tuples that are joined by foreign key constraints, i.e., back-and-forth

foreign key relationships. This causal path requirement is used to reduce the space of all possible

explanations, since some of them become invalid under this causal path requirement. Anyhow, the

second measure is based on intervention ∆ and is termed degree of explanation by intervention:

e(v,Q) =

Q−∆e, if v = −1

−(Q−∆e), if v = 1

where ∆e is the set of tuples that satisfy e. By restricting the queries to have atomic predicates

with equality operators, [104] proposes an algorithm to find the explanations with the top degrees.

The algorithm employs the data cube operator, which is supported in most commercial DBMS, to

enumerate all predicates and to compute their aggregate values. This is done for each relation. The

resultant cubes are then merged and the top explanations are returned. To illustrate this process,

assume two relations R1(A,B,C) and R2(D,E,F) where each have two categorical attributes that

the user is expecting to see the explanations from, and one numerical attribute used to compute

an aggregate value g. This value can be, for instance, a ratio g = agg(R1.C)/agg(R2.F). Let

us assume the user thinks this ratio is too high. To find the top explanation for g being too

high, the algorithm applies the cube operator on R1 and R2. Let us assume there are two
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distinct values in R1.A = {a1,a2} and R1.B = {b1,b2}, then the cube operator will return 23 rows:

{(a1,∗,g), (a1,b1,g), (a1,b2,g), (a2,b1,g), (a2,b2,g), (∗,b1,g), (∗,b2,g), (∗,∗,g)}. The same for R2.

Each row corresponds to a possible candidate explanation (or a query), e.g., the row (a1,b1,g) is:

select agg(R1.C) from R1 where A = a1∧B = b1;. The g in the row is precisely the degree of

explanation by aggregation, i.e., the function e(v,Q) defined above. However, before ranking these

rows based on g, the algorithm needs to merge the rows produced by the cube operator from R1

with R2. Each row from R1 is joined with all rows from R2 (i.e, full outer join) to form a complete

list of explanations that involve multiple relations, and the g value is recomputed. Finally, the top

explanations are returned. To optimize the search for top explanations, the cube operator is run in

advance for each relation to materialize the rows before joining them.

By regarding outlier values as aggregate constraints, the above techniques exhibit some limitations

and shortcomings in addressing the AQR problem. For instance, both techniques [104, 129] do not

directly specify a target value, rather they specify a direction, i.e., if a value is high or low. Moreover,

[104] is applicable for queries with atomic equality predicates only. In case of range predicates

(as defined in AQR), the cube operator may become extremely expensive to construct and to store,

causing the algorithm’s efficiency to decrease dramatically.

Refine for Expected and Unexpected Tuples

In [16], it is argued that query refinement techniques can be of great benefit in applications where

users have limited access to the database, e.g., a web-based search engine for airlines tickets. In these

applications, if a user’s query is not returning the desired results, then it is difficult to manually alter

the query’s predicates and submit the query, as there are generally limits imposed by the database

owner (e.g., number of queries per user) which makes manual refinement restricted. Motivated by

that challenge, the work in [16] has proposed the Why-not? model which aims to identify the optimal

set of predicates in a query Q’s plan that are responsible for excluding a set of specific tuples T from

Q’s result. This optimal set of predicates is identified by representing Q’s plan (i.e., predicates) in a

directed acyclic graph, then finding out all picky predicates in that graph in a bottom-up or top-down

approach. A predicate p is said to be picky if T is in p’s input set but not in its output set. While

there might be a large number of picky predicates, the optimal set of predicates, i.e., the frontier picky

predicates are the ones at the top of the graph. That is, the last picky predicates to exclude T from the

answer. These predicates are suggested to the user as answers for why T is not in Q’s result.

The ConQueR approach in [118] was proposed to solve a similar problem: automatically and

minimally refine Q to explain why-not questions for the missing tuples set T . Since there might be a
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large number of refined queries that explain the why-not questions, the approach selects the refined

query Q′ that minimizes the imprecision and dissimilarity to Q. The imprecision of a refined query

Q′ to Q, with respect to the missing tuples T , is represented as the number of irrelevant tuples, and is

given by:

imprecision(R(Q′),R(Q),T ) = |R(Q′)−R(Q)−T |

Where R(Q) represents the set of tuples returned by query Q. Hence, the imprecision defined above

measures how well Q′ satisfies the refinement constraint. To guarantee minimal refinement, ConQueR

requires that the dissimilarity of Q to Q′ be minimal. The dissimilarity of Q to Q′ is measured as the

minimum edit distance to transform Q into Q′. Thus, the optimal refined queries are the set of all

queries that dominate other queries in these two measures: imprecision and dissimilarity. That is,

the skyline of the refined queries are the solutions for why not including T in the result of Q, which

ConQueR finds in two phases. In the first phase, ConQueR modifies a predicate Pi : Ai ≤ c in Q to

Pi : Ai ≤ c′ such that c′ is the maximum value between the corresponding values in attribute Ai in

Q’s result, and the corresponding value in attribute Ai in the missing tuple set T . By modifying all

predicates in Q, this phase guarantees to return a refined query Q′ including the missing tuples T .

However, Q′ will most likely contain too many irrelevant tuples as well. Hence, ConQueR improves

the precision of Q′ by adding selection predicates on attributes that are not present in Q’s select clause.

A selection predicate Pj : A j ≤ c is added to Q′ such that A j does not appear in the selection clause

of the original query Q, and c is the maximum value in A j found in the set of tuples produced by Q

when A j is included in its projection clause, union the set of missing tuples T .

In [49], they proposed a formal framework for refining a query Q based on expected E and

unexpected U tuples that users supply as a feedback. In this framework, users’ feedback is further

enhanced by finding implicit expected and unexpected tuples via finding the skyline of E and U in

the remaining tuples R−Q(R), where R is the set of all tuples in the database. Then, the predicates of

Q are ordered based on their fitness score, which is computed using precision and recall. The fitness

score for a given predicate in Q is computed by replacing its value with the corresponding attribute

value in either E or U . A greedy approach is followed to select the predicates with the highest scores

to apply the new values in Q.

Beyond the traditional SPJ queries, the works in [43, 50, 51] have addressed refining advanced

queries such as Top-K and Skyline queries to include missing tuples. For instance, in [43], users

provide a set of missing tuples T after reviewing the result of a Top-K query. Their approach in

[43] is to minimally modify the result size K and/or the weighting vector W of the original query,

such that the result of the refined query includes the missing tuples. Since W can be modified in
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infinite number of ways, finding the optimal refined query is computationally challenging. Hence,

their approach trades the quality of the refined query with the running time by considering only a

sample of refined weighting vectors to find the best approximated refined query.

Along the same lines, the proposed technique in [50] aims to refine a reverse skyline query so that

the answer of the refined query includes a missing point (i.e., a missing tuple). The refinement of a

reverse skyline query in [50] is carried out on both the query point and the missing point. Specifically,

to include a missing point in the result of a reverse skyline query, the missing point itself is moved

within the data space so that it appears in the result of the reverse skyline query. Alternatively, the

query point can be moved so that its result includes the missing point. The refinement approach in

[50] ensures that the result of the initial reverse skyline query are retained in the refined query by

allowing the movements of the query point to be within a safe region.

In other query settings such as the similar graph matching problem [51], users provide a set

of missing graphs instead of tuples. The aim here is to find the optimal refined graph query

that minimizes the distances between itself and the set of missing graphs, union the initial graph

query answer. The constraints in the Similarity-aware, Aggregate-based Query Refinement problem

addressed in this thesis differ from the constraint in the above problem in two ways. First, the objective

in the problems addressed by this thesis is to minimize the combinations of both constraints: similarity

and aggregate constraints. Users are able to change the weights of these constraints to reflect various

applications requirements and needs. Second, the similarity constraint in the problems addressed

by this thesis is measured as the difference between the predicates values of the initial query and the

refined one, while in [51] the similarity of a refined graph query is measured as the maximum distance

between this particular refined graph query and the graphs in its result, such that it is less than or equal

to the maximum distance between the initial graph query and the graphs in its result.

In short, the QR problems addressed by the techniques above have different constraints to

the Similarity-aware, Aggregate-based and Similarity-aware, Correlation-based Query Refinement

problems addressed in this thesis. Extending those techniques to cater for the constraints in

these two problems, and for the similarity constraint is simply not practical. For instance, in

the Similarity-aware, Aggregate-based Query Refinement problem, users cannot provide expected,

unexpected or example tuples. Rather, users provide aggregate constraints that a query must satisfy.

A single aggregate constraint can be formed from a combinatorial number of tuples. Hence, it is not

practical to ask a user to specify an aggregate constraint using tuples. Further, in this problem the

constraints users specify for their queries are certain aggregate values, while in the above techniques

the constraint is to include or exclude certain tuples. Similarly, the constraints and problem settings

in the Similarity-aware, Correlation-based Query Refinement problem are quite different to the ones
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discussed in the related work above.

Next, we discuss the shortcomings of the related work which addresses different varieties of the

Similarity-aware, Aggregate-based (Section 2.2.2) and Similarity-aware, Correlation-based (Section

2.2.3) Query Refinement problems.

2.2.2 Aggregate-based Query Refinement Techniques

In AQR problems, users specify aggregate constraints (in a one-off interaction fashion), and the goal

is to efficiently formulate or refine a query such that its result fulfills these user-specified constraints.

The aggregate constraints can be cardinality constraints [79, 14], i.e., constraints over the size of the

returned result, or aggregate values in the query result, e.g., [58]. The former has many applications,

one of which is to obtain suitable query instances to evaluate new changes in a database engine,

while the latter is useful in exploring data by searching for properties in the result, such as a specific

aggregate value.

In databases testing, it is often required to evaluate the performance of a new component added to

the database engine by running test queries before and after the component is added [13]. Generating

these test queries though is challenging because their predicates have to be automatically examined

and specified to serve a planned test scenario. For instance, it has been shown in [14] that generating

a query given a single cardinality constraint over its result is NP-hard. By relaxing the requirement,

i.e., accepting approximate solutions that are close from the cardinality constraints, they proposed a

heuristics Hill Climbing approach. HC searches for the predicates values of a query that minimize the

average relative error of the cardinality constraints:

1
k

k

∑
i=1

max(
ci

ĉi
,
ĉi

ci
)

where k, ci and ĉi are the number of cardinality constraints, the cardinality constraint of the

sub-expression, and the current cardinality of the sub-expression, respectively.

In short, HC initializes the predicates by values that optimally minimize the relative error, as if

they were independent. To move from this initial state, it refines the predicates’ values one at a time by

a step-size, and chooses the one that minimizes the relative error the most. These steps are repeated,

and the step-size is halved if the relative error cannot be reduced by any further steps. HC terminates

once it reaches a specific step-size.

The work in [79] addresses a general case of this problem where multiple cardinality constraints

are defined. A practical solution called TQGen is proposed which can quickly generate queries that

28



CHAPTER 2: LITERATURE REVIEW

approximately satisfy these multiple constraints. Specifically, TQGen returns a query that optimally

minimizes the sum squared logarithmic relative error:

k

∑
i=1

(log
ci

ĉi
)2

Equipped with sampling based techniques and novel search procedures, TQGen is able to optimize

the search and the number of calls made to the evaluation layer. The proposed solution TQGen

works in two phases: firstly bounding the search space, then exploring this bounded space. The

first phase outputs a query QU that overshoots all cardinality constraints (i.e., an upper-bound of the

search space) by iteratively performing a binary search for each predicate over its domain. Then in

the second phase, QU is explored efficiently to find optimal refined queries that minimize the relative

error. This is done by partitioning all dimensions d in QU into k equi-width segments, producing a

grid with exactly kd cells. Thus, the potential test queries are defined as the intersection points of

these cells boundaries. The partitioning of the grid is repeated recursively to obtain finer granularity

grids, but only for the cells that are not pruned. A cell is pruned if its lower bound undershoots all

cardinality constraints, or if the running sum of the lower bound exceeds the current best error. TQGen

is frequently required to call the database evaluation layer to compute the relative error in these two

phases. A single call to the database layer is considered expensive since it involves I/O operations,

hence, repeatedly calling it will disadvantage TQGen as a practical solution. For that, TQGen uses

two special sampling techniques that compute (in advance) super sets of the search space and store

them into memory. Hence, relative errors are estimated from these memory-resident super sets, rather

than calling the database layer.

A more complex instance of this problem is presented in [58]. This work proposes a new data

exploration framework called Semantic Windows (SW) implemented on top of an existing DBMS.

In SW, users search for windows of interests (i.e., queries) that are specified by content-based (e.g.,

aggregate values such as avg(price) > $50) and shape-based (e.g., a 2-dimensional rectangular

shape) constraints, collectively called conditions. To find these queries efficiently, SW represents the

search space as a grid: each dimension is divided into sub disjoint intervals of the same size, hence, the

grid becomes a collection of disjoint cells. The goal of SW is to efficiently search this grid for adjacent

cells that formulate a window (i.e., a query). A heuristic search algorithm (HOSA) was proposed to

traverse this grid using a priority queue that orders the windows based on a utility score derived from

the user-supplied conditions and I/O cost. This ordering resembles a cost-benefit analysis to rank

the windows and ensure exploration of the ones that have higher utilities first. Specifically, given a
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window w, its utility Uw is a combination of its cost and benefit:

Uw = Bw +(1−Cw

k
)

The cost Cw is approximately the number of non-cached cells in w (k is the number of cached

and non-cached cells in w), while the benefit Bw is how close w is to the defined conditions.

HOSA employs sampling techniques to estimate Bw efficiently and filter out unpromising cells using

shape-based conditions.

A major limitation of these techniques is that they are oblivious to the similarity of the refined

or generated query to the user’s initial query. Extending the techniques in [79, 14, 58] to cater for

query similarity entails efficiency and effectiveness limitations. For example, since HC [14] chooses

refinement steps based on evaluating the relative error locally, it is vulnerable to getting stuck at a

local minima when query similarity is included in assessing the relative error of each step. While

this might not be true for SW framework [58], it still suffers from high I/O and CPU costs from

exhaustively evaluating all cells in the partitioned space when there are no shape-based conditions.

This thesis positions itself with [78, 17, 10, 2, 123, 125, 11, 12] since it shares with all of these

works a similar assumption. This assumption is a common problem that users often face when

performing DE tasks. Specifically, in some DE scenarios, users explore databases to retrieve desired

results by formulating and submitting queries to the DBMS. A desired result, in this particular set of

related works, is a target aggregate value that the query should return. Example 1.1 in the previous

Chapter illustrates an instance of this exploration scenario.

With the assumption that users submit imprecise queries, AQR aims to automatically refine users’

initial imprecise queries to maximize satisfaction of the aggregate constraints. While the AQR

problem constraint seems somehow close from the first constraint in Table 2.1, it is fundamentally

different. In Constraint 1, users do not explicitly provide a target value. Hence, the objectives are

different in principal.

One of the earliest works on the AQR problem is the framework presented in [17]. This framework

was proposed to partially automate the process of refining a query with a constraint on results, thus

relieving the "undue burden" on users. It defines an extended query model as a doublet (Q,P), where

Q is the input conjunctive query, and P is an acceptance test. The acceptance test P is a Boolean

function which, given a query answer, returns either true or false to represent users’ likelihood of

accepting the answer (i.e., the constraint of refinement). An example of this function is:

P(Q) ≡ count(Q) ≥ c.
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The above acceptance test requires the answer to the query to be at least equal to c tuples, i.e., a

minimum requirement of the answer’s cardinality. Hence, the framework aims to minimally transform

Q (a rejected query) to Q∗ (an accepted query). To achieve that transformation, users have to define the

acceptance tests P and associate them with modification operators (which users also have to define).

Each operator is defined by a set of rewrite rules. These rules are precisely the refinement operations

to be applied on the predicates that are mentioned in Section 1.3.1 above. For instance, a rewrite rule

to generalize an answer to increase its cardinality is to remove a conjunctive predicate. A minimum

refinement is guaranteed by selecting the minimum possible number of rules to obtain Q∗.

Similar to the generalization operator above, [57] addresses the problem of refining an initial query

Q with d range predicates to a query Q∗ that minimizes the absolute difference |Q∗|−c where |Q∗| is

the number of answers returned by Q∗ and c is the cardinality constraint, i.e., the count(*) aggregate

operator. The problem also requires Q’s answer to be smaller than c (i.e., similar to the too-few

answers problem); the additional answers {Q∗−Q} to be the closest to Q; |Q∗|− c minimized; and

the processing cost minimized. The SAUNA system guarantees the closeness of {Q∗−Q} to Q by

measuring the L2-norm distance between the additional answers and the query Q and choosing the

one with the minimum distance: √√√√ k

∑
i=1

d(pi,Q)2

where pi ∈ {Q∗−Q} is a tuple in the additional answer set, and 1≤ k≤ |Q∗−Q|. Multi-dimensional

histograms are used in SAUNA to address the processing cost involved in estimating the cardinality

of candidate queries. However, each candidate query will have to be evaluated from the database at

least once to compute its dissimilarity to the input query.

The Package Query problem defined in [10, 11, 12] is in some way an extension of the AQR

problem presented in Section 1.3.1. Specifically, there are multiple target values a query has to satisfy,

however, this problem does not consider the minimum refinement for an initial query, i.e., the user is

interested in a query that satisfies the target values regardless of its similarity to the initial query Q.

In a Package Query [11], the aggregate constraints are defined as global constraints, e.g., sum(kcal)

= 2000 and sum(saturatedfat) = 0, which a query has to satisfy simultaneously. [12] proposes

two algorithms to address this problem: one that returns exact solutions, and another that is more

efficient and returns error-bounded approximate solutions. Both translate the global constraints into

an ILP problem, and use one of the common ILP solvers (e.g., IBM CPLEX) directly to find solutions

for the ILP problem. The approximate version SketchRefine is based on the divide-and-conquer

approach to divide the search space (offline) into partitions represented by approximate tuples, and

then apply ILP solvers on each one of these partitions to obtain a sketch of the solution. Then the
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approximate tuples are replaced with the real data and the ILP solvers are applied again on each

partition to obtain the final refined output, i.e., tuples that maximally satisfy the global constraints.

Note that these algorithms search for optimal tuples, rather than queries, which is a major difference

to the goal of the AQR problem, where a query is in a conjunctive form.

The related works in [78, 123] specify the cardinality of the query’s result to be the refinement

constraint (i.e., count(*)) while [125] generalizes the constraint to be any standard aggregate value,

i.e., sum, avg, min, max. The problem defined in [123, 125] addresses a constraint similar to the

AQR problem. The constraint is for the query result to satisfy an aggregate constraint, e.g., agg(ai),

where agg() can be the result of applying any aggregate operator on any numerical attribute ai. The

previous techniques discussed in Section 2.2.1 support no such constraint.

The ACQUIRE approach in [125] accepts from the user an aggregate query Q that is to be refined,

an aggregate constraint c, and a threshold ϕ , and aims to find all refined queries q ∈ Q∗ that are

within the user-specified threshold, i.e., |c−q| ≤ ϕ for all q ∈ Q∗. To find Q∗, ACQUIRE partitions

the search space (starting from Q) using a constant step size, and then iteratively enumerates and

navigates the possible refined queries based on their closeness to Q. A refined candidate query is

added to the solution if it is within the user threshold ϕ . To check this condition, ACQUIRE is

actually required to compute the aggregate. It does so by computing the aggregate incrementally

from previous queries, using the additive property of the aggregates. This is a core principle in

the ACQUIRE approach which is true for aggregates such as count, sum, max, avg. ACQUIRE

extensively uses this additive property of aggregates while navigating the search space. However,

ACQUIRE ignores the I/O costs endured while navigating the search space. Further, it uses a fixed

step size during its iterative enumeration of candidate queries, which could reduce the algorithm’s

efficiency if the solution is located far away from Q.

Given an inconspicuous query Q which returns too many/few answers, the SnS framework

in [78] interacts with the user to relax or contract this inconspicuous query by transforming the

predicates in one direction only, i.e., either expanding the predicates, or contracting them. This is

a restrictive problem of AQR where the refinement constraint is the cardinality of the query’s result,

i.e., count(*). The SnS framework refines Q in two steps. First, it bounds the search space by

performing a binary search iteratively on each predicate in the original query Q while fixing the

remaining predicates. The goal of this step is to secure a superset query QU that is guaranteed to have

the solution. Then, in the second step, this superset query (which corresponds to a d-dimensional

rectangle) is navigated interactively with the user, one predicate at a time in a rounds fashion. In each

round, the user arbitrarily selects a predicate, and manually refines it within its new artificial bounds

(i.e., within the d-dimensional rectangle found in the first step). The framework then responds by
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performing a binary search on all predicates that are yet to be refined by the user. This results in

shrinking the bounds of the unrefined predicates, hence, making it easier for users to select a value

within a tight range rather than the original range of the predicates. During these steps, SnS estimates

the cardinality using a random sample with bounded approximate error that is constructed once for

each query. This sample enables SnS to provide fast and accurate estimation during the interactive

navigation. Although SnS framework manages to incorporate users’ preferences in refinement, it does

not provide a fully automatic solution for refinement since the second step requires users’ feedback

for all predicates.

To summarize, although some of the aforementioned techniques provide efficient and effective

techniques for special cases of the AQR problem, they exhibit certain limitations. For instance, the

techniques in [79, 14] do not consider the similarity of the refined query to the input query, and are

limited to one special aggregate constraint: cardinality. Similarly, the SW framework and the Package

Query in [58, 10] do not account for the refined query’s similarity. Moreover, the SW framework

depends on only shape-based conditions to prune the possibly exponential search space. For the

techniques that considers the refined query’s similarity in refinement, the framework in [17] requires

an experienced user to define rewrite rules for each refinement operator, which can be an obstacle

especially for users with no background in the data. The SnS framework [78] requires no such rewrite

rules, however, it fails to automatically infer the refined query’s similarity to the input query. That

is, it obtains users’ feedback on each predicate iteratively. Further, it is limited to one special case of

aggregates. Being a fully automatic solution, ACQUIRE [125] is able to return refined queries with

any aggregate constraints efficiently by utilizing the additive property of aggregates. In particular,

it partitions the search space based on a constant step size then exhaustively examines all candidate

queries in this partitioned space based on their closeness to the input query Q. However, there are

two main limitations: 1) although an aggregate of a candidate query is computed incrementally from

previous queries, the I/O cost was not addressed, and 2) the constant step size depends on parameters

that users have to specify, and could reduce the algorithm’s efficiency if the solution is located far

away from Q.

2.2.3 Correlation-based Query Refinement Techniques

As mentioned briefly in Section 1.3.2, the CQR resembles the Query by Output and Query Reverse

Engineering problems presented in [119, 120, 115]. The goal in solving these problems is: given an

output of a query, find the original query that returns the exact same output. Similarly, in the CQR

problem the user provides an output (i.e., target pairwise correlation values) and the aim is to refine
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the user’s input query until this target is achieved.

However, the pairwise correlation constraints and the time series data in CQR introduce unique

challenges which cannot be addressed by the techniques proposed there. For instance, [119] requires

that the query’s result must not contain an arithmetic expression such as correlation, whereas

[115] optimization techniques are based on series of rules using aggregates’ properties that are not

applicable to correlation.

A more related body of work is presented in [70, 107, 87, 39] where the focus is to compute the

correlation efficiently. Although all of them do not consider the similarity notion, they are tightly

related to the Similarity-aware, Correlation-based Query Refinement problem, because computing

correlation efficiently is at the core of this problem.

The BRAID algorithm in [107] utilizes the fact that correlation can be computed incrementally to

quickly detect any pairs that are highly correlated, with a slightly small storage overhead. To illustrate

how correlation is computed incrementally, let us look at the Pearson’s correlation coefficient function

for a pair of time series Ti,Tj of equal length `:
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k is the kth value in Ti.
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2 are computed from scratch once, and then cached in memory. When a new data point is added

to the time series Ti and Tj, the cached sufficient statistics are updated by adding this new data point

to the five summation components. Then, the correlation ρ(Ti,Tj) is computed in a constant time.

The techniques in [70, 71] build on the observation of [107] where correlation can be computed

incrementally. These techniques however are a special case of Similarity-aware, Correlation-based

Query Refinement problem since there is only one correlation constraint for all time series pairs, and

they compute the correlation for pairs that are coupled with a given time series.

The work in [70] focuses on the problem of finding the longest time interval in which a pair

of time series are highly correlated. This is clearly a limited version of the Similarity-aware,

Correlation-based Query Refinement problem discussed above in Section 1.3.2. Specifically, the

problem in [70] is a Bi-variant analysis problem, whereas the Similarity-aware, Correlation-based

Query Refinement problem is a Multi-variant problem. Moreover, there is only a single threshold

(i.e., a single correlation constraint) in [70], while in CQR there are as many correlation constraints
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as the number of time series pairs. The SKIP algorithm proposed in [70] exhaustively searches all

time intervals in a top-down strategy to find the longest, highly correlated interval of two time series.

Similar to [88], SKIP precomputes the sufficient statistics of all time series for all possible lengths

of time intervals (provided that the starting position of all intervals is the first data point in each

series), and cached them in memory. Then, to compute the pairwise correlation for any length in a

constant time, SKIP retrieves the corresponding cached statistics and performs the required addition

and subtraction operations. Suffering from a large storage overhead for caching the sufficient statistics

for all time series for all possible lengths, a technique is proposed which trades off the storage

overhead of these statistics and the time it takes to compute the Pearson’s correlation.

By following a different execution strategy than SKIP, [71] proposes an algorithm called ZES

which is superior to SKIP. Under the ZES algorithm, there is no need to precompute the sufficient

statistics for all possible lengths of time intervals. The ZES algorithm’s execution strategy enables it

to compute the correlation in a constant time by updating the cached sufficient statistics incrementally,

similar to BRAID algorithm [107].

The AEGIS framework in [39] was proposed for fast computation of correlation in a distributed

environment. The framework’s goal is to report all pairs of all time series that are correlated above a

certain correlation value, i.e., it assumes only one correlation constraint for all pairs. This framework

heavily depends on this single constraint. Further, it assumes the length of the time sub-interval is

known prior, e.g., given by a user. Based on these two assumptions, the framework partitions the time

series such that the correlated pairs are contained in a single partition, or its neighboring partitions,

to minimize communication costs. Extending this framework to address the general case in the

Similarity-aware, Correlation-based Query Refinement problem where none of the two assumptions

are enforced is not applicable.

A similar work is presented in [87], however, it also enforces the same assumptions as in

[39]. [87] proposes to transform the time series into the frequency domain using Discrete Fourier

Transformation (DFT) to control the CPU and I/O costs in computing pairwise correlation for all

series of a given length. Using the transformed series, their algorithm partitions the series into

batches, such that each batch contains highly correlated series. Batches with highly uncorrelated

series are pruned and are not loaded into memory, i.e., reducing I/O costs. To reduce CPU costs (i.e.,

computational costs), [87] leverages the DFT representation of the original time series and its linear

transformation to correlation (z-normalized Euclidean distance) to avoid computing correlation for

all pairs. Specifically, the algorithm initially checks the distance between the DFT representation of a

pair of series. If that distance is lower than a specific threshold (i.e., correlation constraint), then this

pair is pruned and the algorithm skips computing its correlation value.
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A more recent work is presented in [100] which aims to report highly correlated pairs while

minimizing the response time. To achieve low latency, the proposed algorithm in [100] follows

the same incremental approach as in [107] to incrementally compute the correlation of all pairs. A

priority-based search algorithm is also proposed in [100] which orders the computations of pairs such

that the ones that are highly correlated are computed first.

In summary, although the above techniques provide efficient algorithms for computing correlation,

the assumptions enforced (e.g., length of time sub-interval is known, one correlation constraint

for all pairs, Bi-variant analysis) render them short in addressing the goal of the Similarity-aware,

Correlation-based Query Refinement problem. In particular, the Similarity-aware, Correlation-based

Query Refinement problem discussed in Section 1.3.2 presumes that the user is oblivious to the

starting location and length of the time sub-interval. Moreover, it presumes that there is a correlation

constraint for each pair of time series. Hence, the goal is to refine the user’s query (i.e., the

time sub-interval) so that the query’s result satisfies these pairwise correlation constraints, while

maximizing the similarity between the refined query and the original one.
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Similarity-aware Aggregate-based Query

Refinement

3.1 Overview

This chapter presents our contributions towards the Similarity-aware, Aggregate-based Query

Refinement problem: inclusion of similarity in query refinement. It is organized as follows: Section

3.2 provides notations and definitions for the Similarity-aware, Aggregate-based Query Refinement

problem which are used throughout the sections of this chapter. These notations and definitions

include the cost model assumed in refinement, the definition of query similarity and its measures, a

declarative model for query refinement and the formal problem definition.

Section 3.3 introduces a special case of the Similarity-aware, Aggregate-based Query Refinement

problem where the aggregate constraint is the cardinality of the result. Accordingly, innovative

schemes called SAQR are presented in Section 3.3 which aims to efficiently refine queries based

on cardinality constraints on the result.

In Section 3.4, the general case of the Similarity-aware, Aggregate-based Query Refinement

problem is presented where users’ constraints can be any SQL standard aggregate operators sum,

avg, min, max. For that general case, efficient approximation schemes are proposed and compared

to related algorithms.

Lastly, Section 3.5 presents a web-based application ORange which employs SAQR schemes for

refining selected areas based on cardinality constraints.
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Symbol Description

I Input query

B Database B

Pi : ai ≤ xI
i Predicate Pi on numerical attribute ai in input query I

wi Weight of predicate Pi

R Refined query

GR Aggregated value of R

G Aggregate constraint

∆G
R Aggregate deviation of R

∆S
R Similarity deviation of R

α Similarity weight

∆R Total deviation of R

δ Granularity of the search space

Table 3.1: Summary of Symbols

3.2 Notations and Definitions

In this section, we firstly introduce notations and definitions for the Similarity-aware,

Aggregate-based Query Refinement problem, then we present the formal definition. All used symbols

are listed in Table 3.1 with their descriptions.

Assume the presence of a database B with one or more relations that are linked by foreign keys.

The input to the refinement process is an initial select-project-join (SPJ) query I, which is to be

transformed into a refined query R.

A query I is a conjunctive, first-order query defined in terms of d predicates P1,P2, ...,Pd over d

numerical and categorical attributes in B. Similar to [78, 108, 55, 109, 12], we assume in our model

that all relevant relations in B are joined beforehand by foreign keys, i.e., B is a d-dimensional flat

relation that is materialized in advance by joining all relations through foreign keys.

Numerical Attributes: A predicate Pi on a numerical attribute ai is in the form li ≤ ai ≤ ui, where

ai is the ith attribute in B, and li and ui are the lower and upper limits of query I along attribute

ai, respectively. This results in a range query represented as a d-dimensional box (also known as

hyper-rectangle or orthotope).

The domain of each attribute ai is limited by a lower bound Li and an upper bound Ui. Hence, a

predicate Pi can be further expressed as: Li ≤ li ≤ ai ≤ ui ≤Ui. We note that an attribute ai that is not

included in I, is equivalent to Li ≤ ai ≤Ui.
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Figure 3.1: Example - refining an input query I in a two-dimensional space

A refined query R for an initial query I is achieved by modifying the lower and upper limits for

some of the predicates in I. That is, for a predicate Pi in query I, a refined predicate P′i in R takes the

form l′i ≤ ai ≤ u′i.

Similar to [79], we assume that a double-sided predicate is equivalent to two separate single-sided

predicates. Hence, a predicate li ≤ ai ≤ ui is equivalent to the following two predicates: ai ≤ ui, and

−ai ≤−li. Accordingly, refining a single-sided predicate ai ≤ xi on a numerical attribute takes place

by means of one of two operations as follows:

1. Predicate expansion: in which ai ≤ x′i, where x′i > xi, or

2. Predicate contraction: in which ai ≤ x′i, where x′i < xi.

Thus, under both of the two operations, the value |xi− x′i| is the amount of refinement applied to

predicate Pi. For example, an input query I:

I: SELECT * FROM B WHERE a1 ≤ xI
1 AND a2 ≤ xI

2;

can be refined be expanding its predicates across the two attributes a1 and a2, as shown in Figure 3.1:

R1: SELECT * FROM B WHERE a1 ≤ xR1
1 AND a2 ≤ xR1

2 ;
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Figure 3.2: A categorical attribute location represented as a three-levels hierarchy to enable
refinement. Each value in location is mapped to a level, i.e., city, state, country

R2: SELECT * FROM B WHERE a1 ≤ xR2
1 AND a2 ≤ xR2

2 ;

Categorical Attributes: In the presence of categorical attributes, a multi-level hierarchy is typically

used to rank the different categorical values. Hence, refining a categorical predicate of this form Pi :

ai = x is simply mapped to moving up or down within the hierarchy [78, 125]. For example, consider

a categorical attribute called location that indicates the placement of a product in a warehouse

database in Australia. A three-levels hierarchy is created to map the values of the location attribute

to specific ranks: city, state, country, which facilitate the refinement of that predicate. As

shown in Figure 3.2, moving up in the hierarchy is equivalent to expanding the predicate, while

moving down is obviously the process of contracting that predicate.

Join Predicates: Join predicates are excluded from refinement since these predicates are specified on

identifier attributes (i.e., primary key, foreign-key attributes). A join predicate P joins two relations

R1 and R2 on a common attribute ai, i.e., P : R1.a = R2.b. Clearly, join predicates of this form do

not follow the numerical predicate form defined earlier. Hence, the two refinement operations are not

applicable on these predicates.

Clearly, the number of possible refined queries is exponential in the number of dimensions and

forms a combinatorial search space. For instance, consider a query I over a d-dimensional database,

in which each attribute ai is discrete and the number of distinct values in each dimension ai is n.

For query I, the set of possible refined queries form a query space R, where the size of that space is

|R|= nd .

Given an objective for query refinement (e.g., satisfying a certain aggregate constraint), exploring

the large search space R to find the optimal parameter settings (i.e., optimal R) becomes a non-trivial

and challenging task. For instance, it has been shown that finding an optimal query R with cardinality
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constraints (a special case of aggregate constraints) is an NP-hard problem [14].

To circumvent the high-complexity of query refinement, several search heuristics have been

proposed (e.g., [78, 79, 14, 57, 123]) which aim to minimize the deviation between the aggregate

constraint and the achieved one. It has been shown that these search heuristics often provide

efficient and effective solutions to this Aggregate-based Query Refinement problem. In particular,

the relationship between the possible refined queries and their corresponding constraints exhibit a

monotonic pattern [14], which makes it practical to apply local search methods. As expected, the

main idea underlying these heuristics is to limit the search space to a small set of possible candidate

queries Rc, such that Rc ⊆R, and |Rc| � |R|.

3.2.1 Cost Model

For each candidate query R ∈ R, a probe of the database is required to estimate the aggregate of R.

Current techniques use alternative methods to perform such probe such as sampling [78, 79], and

histograms [14, 57].

Irrespective of the employed estimation method, a call has to be issued to the database evaluation

layer, where the aggregate value of R is estimated by running it on a small set of data (i.e., a sample

or histogram table). This makes the probing operation inherently expensive and is a strong motivation

for reducing the total number of probes required to achieve the optimal R. Accordingly, the incurred

cost of the refinement process is measured in terms of the number of probes to the evaluation layer,

and is defined as:

CR = |Rc| (3.2.1)

We also follow the same approach as in [14, 79], in which we consider the probing operation for

aggregate estimation as a blackbox and our goal is to minimize the number of such probes. Differently

from those approaches, however, our goal is to achieve a Similarity-aware, Aggregate-based Query

Refinement, as we describe next.

The techniques mentioned above are oblivious to the (dis)similarity between the input query and

its corresponding refined version. That is, to meet the aggregate constraint, the generated refined

query might often be very far (i.e., dissimilar) from the input query. While the (dis)similarity between

two queries can be quantified using several alternative measures (e.g., [118, 98, 57, 90, 123]), it should

be clear that, irrespective of the adopted similarity measure, a refined query that is very different from

the input one will have a very limited benefit to the end user and is often rendered useless [118].

Therefore, we propose the Similarity-aware, Aggregate-based Query Refinement problem, in

which the user satisfaction is measured in terms of both:
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1. Meeting some specified aggregate constraint on the refined query, and

2. Maximizing the similarity between the input query and its corresponding refined one.

Achieving such goal is rather a challenging task as it would require an exhaustive examination of

the large space of possible query refinements. In particular, the monotonic property exhibited under

the objective of Aggregate-based Query Refinement no longer holds for our dual-criteria objective,

in which aggregate constraints are combined with similarity. Hence, current Aggregate-based Query

Refinement techniques that are based on local search heuristics (e.g., the Hill Climbing algorithm in

[14]) have higher chances of meeting a local minima and falling short in finding a refined query that

strikes a fine balance between minimizing the deviation in aggregate constraints and maximizing the

similarity.

Before presenting the Similarity-aware, Aggregate-based Query Refinement problem, we discuss

in detail how to measure the similarity of a refined query, and the tradeoff between efficiency and

effectiveness that is manifested in the query similarity measures.

3.2.2 Query Similarity Measures

The intuition of including query similarity in refinement is to provide a refined query R that is as

similar as possible to the input query I. A refined query R that is similar to the input query I will most

likely retain as much of the user’s intention in the input query I and ultimately increases the user’s

satisfaction with the results.

Box Query Similarity Method Examples

Predicate-oriented [118, 60, 61, 17]

Data-oriented [98, 57, 117]

Value-oriented [90, 123, 125]

Table 3.2: Examples from the literature for box query similarity measures

Measuring the (dis)similarity between two point queries is very well-studied in the literature,

where typically a variant of the Lp-norm metric is used for that purpose (e.g., p = 1, or p = 2 for

measuring the Manhattan, or Euclidean distances, respectively). Meanwhile, there is a lack of an

established standard for measuring the distance between two box queries (i.e., I and R), which are the

building blocks for the query refinement process.

We broadly classify existing methods for measuring the distance between two box queries as:

predicate-oriented, data-oriented, and value-oriented methods (Table 3.2).
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In the predicate-oriented measures (e.g., [118, 60, 61, 17]), the distance between I and R is

mapped to that of measuring the edit distance needed to transform I into R, where the set of allowed

transformation are: add, delete, or modify a predicate. Because of its simplicity, a predicate-oriented

measure is very coarse for the purpose of query refinement as it falls short in distinguishing between

the different possible modifications that can be applied to each predicate. That is, refining predicate

ai ≤ xI
i into ai ≤ xR

i counts as one modification operation regardless of the value xR
i and the amount of

refinement, i.e., |xI
i − xR

i |.

In the data-oriented measures (e.g., [98, 57, 117]), the distance between I and R is based on the

data points (i.e., tuples) that are included in the result of each query. For instance, to measure the

distance between I and an expanded R, [57] computes the distance between I and all the points in

R− I (i.e., the extra points added due to expansion). Clearly, data-oriented methods incur a large

overhead, which potentially renders a query refinement process infeasible.

Finally, in the value-oriented measures (e.g., [90, 123, 125]), the distance between I and R is based

on the amount of refinement experienced by each predicate. Formally,

D(R, I) =
1
d

d

∑
i=1

|xR
i − xI

i |
Ui−Li

(3.2.2)

Compared to the predicate-based methods, Eq. 3.2.2 considers the amount of applied refinement (i.e.,

|xR
i −xI

i |) and provides a reasonable approximation of the data-oriented measures at a negligible cost.

Those reasons render Eq. 3.2.2 to be a suitable choice for the Similarity-aware, Aggregate-based

Query Refinement problem considered in this thesis.

Often, however, users have partial preferences over what predicates to refine and by how much.

That is, the individual weights of query I’s predicates P1,P2, ...,Pd on the objective of refinement, for

a particular user, are uneven [132]. Accordingly, we introduce a new parameter to control the degree

of importance for each predicate, from a user’s point of view. We define wi as a user-supplied weight

for predicate Pi, such that its value is within the range (0-1), where a value of one means predicate Pi

has the highest possible level of importance, while on the other hand a value of zero means it has no

importance at all. We incorporate the weights and rewrite Eq. 3.2.2 to be:

D(R, I) =
1
d

d

∑
i=1

|xR
i − xI

i | ·wi

Ui−Li
(3.2.3)

Where ∑wi = 1 for i = 1, ...,d. We note that for the sake of simplicity, we assume (from now on) all

predicates are equally important, i.e., they have equal weights: wi =
1
d for i = 1, ...,d.

Accordingly, we use the function expressed in Eq. 3.2.3 as the default measure of distance
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for range predicates in the Similarity-aware, Aggregate-based Query Refinement problem, which is

formally defined below.

3.2.3 Problem Definition

The current query refinement techniques (e.g., [79, 14, 123, 78]) often provide efficient and effective

solutions to the Aggregate-based Query Refinement problem. Specifically, these techniques aim to

quickly navigate a large search space of possible refined queries, and return one refined query such

that its aggregate is very close to a specified aggregate constraint. That is, minimize the deviation

between the aggregate constraint and the achieved one. Formally, given an aggregate constraint G,

the aim of these techniques is to find a refined query R such that ∆G
R is minimized:

∆G
R =

1
z
|G−GR| (3.2.4)

where z is a normalization factor, and GR is the aggregate value of R.

Clearly, while the user might be satisfied that the refined query’s aggregate value GR is very close

to the constraint G, they would also expect the refined query R to be very close (i.e., similar) to their

input query I. A refined query that is very different from the input one will have very limited benefits

to the end user and is often rendered useless.

Motivated by that, we propose the Similarity-aware, Cardinality-based Query Refinement

problem, in which the user satisfaction is measured in terms of both: 1) meeting some user specified

aggregate constraint on R, and 2) maximizing the similarity between R and I. Formally:

Definition 3.1. Similarity-aware, Aggregate-based Query Refinement problem: Given a database

B, an input conjunctive query I, a distance function D(), and an aggregate constraint G over the

result I(B), the goal in the Similarity-aware, Aggregate-based Query Refinement problem is to find R

that satisfies the aggregate constraint G while minimizing D(R, I). �

Ideally, the distance between R and I (i.e., D(R, I)) should be equal to zero (i.e., maximum

similarity such that R ≡ I). In reality, however, achieving that extreme case of exact similarity is

unrealistic, unless query I already satisfies the aggregate constraint G, i.e., G = GI . That is, I already

meets its aggregate constraint G and no further refinement is required. Hence, in this work, we adopt

a hybrid metric, which captures and quantifies the success of meeting the user’s expectations for both

similarity and aggregate constraints. In particular, we capture the user’s (dis)satisfaction in terms

of the overall deviation (in both, aggregate and similarity constraints) from the user’s expectations,

which is formally defined as:
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∆R = α∆S
R +(1−α)∆G

R (3.2.5)

where ∆S
R is the deviation in similarity, which is captured by means of a distance function D(R, I) as

described earlier in Section 3.2.2, and ∆G
R is the aggregate deviation defined above in Eq. 3.2.4.

The parameter α simply specifies the weight assigned to the deviation in similarity, and in turn,

(1−α) is the weight assigned to the deviation in cardinality. Parameter α can be user-defined so as

to reflect the user’s preference between satisfying the aggregate and similarity constraints.

On the one hand, setting α = 0 is equivalent to the AQR problem. On the other hand, setting

α = 1 is equivalent to the extreme case described above, in which R≡ I. In the general case, in which

0 < α < 1, both the aggregate and similarity constraints are considered according to their respective

weights and the overall deviation is captured by ∆R. Hence, a small value of ∆R indicates a small

deviation in meeting the constraints, and more satisfaction by the refined query R.

Interestingly, the similarity and aggregate constraints are typically at odds with each other. That

is, maximizing similarity (i.e., ∆S
R) while minimizing aggregate deviation (i.e., ∆G

R ) are two objectives

that are typically in conflict with each other, and α specifies by how much those two constraints

contribute to the overall deviation ∆R. For instance, assume that the input query I in Figure 3.1 does

not satisfy an aggregate constraint G. In order to satisfy G, query I has to be refined by expanding or

contracting its predicates. Hence, any refined query R that minimizes ∆G
R (i.e., closes on the constraint

G), will have to increase ∆S
R (moves far from I by expanding or contracting its predicates).

Lemma 1. Minimizing ∆S always conflicts with minimizing ∆G, provided that 0 < α < 1 and the

input query does not satisfy the aggregate constraint.

Proof. It is trivial to proof the above lemma using the example in Figure 3.1. Assume that I does

not satisfy an aggregate constraint G, e.g., the cardinality of I is less than a cardinality constraint G.

Hence, to satisfy G (i.e., minimize ∆G), query I has to be refined by expanding its predicates. This

will always result in increasing ∆S. �

As an alternative method for deciding the appropriate α in Eq. 3.2.5, user feedback can be used

to infer the suitable α [77, 111]. For instance, users are asked to label the result of a small sample of

refined queries as acceptable or unacceptable. These refined queries are the result of refining a query

with an aggregate constraint using different values of α , e.g., 0.1, 0.4, 0.6, 0.9. Then, the preferred α

can be inferred from these labeled queries. The larger the sample is, the better value of α is, however,

the more queries users have to label.

Alternatively, α can be system-defined and is set automatically to meet certain business goals or
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objectives that are defined by an application. For instance, assume an application that shows exactly

K number of flights for any user-selected departure and destination within a user-selected time slot. If

no flights are found within the user-selected options (i.e., the input query returns empty result), then it

is more popular and common to show alternative similar flights than showing an empty screen, which

meets the application’s goal. Hence, the input query can be refined with a suitable value of α so that

the refined query returns almost K number of flights that are very similar to the input query and can

fill the application’s screen by suggested flights for the user.

Before presenting our proposed techniques for solving the problem defined in Def. 3.1, we

present a declarative query model which encapsulates all the essential parameters that are used by

our proposed techniques.
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3.2.4 Declarative Query Model

To support query refinement for a large spectrum of database users, we propose a model with a

friendly command interface which essentially encapsulates all usage scenarios and sits as a medium

between users and the proposed schemes. This model is an extension of the traditional SQL language

to capture users’ constraints for refinement. Specifically, the user-supplied constraints are enclosed

within a new clause, such that the refined query must satisfy all of them. Here is the proposed,

extended query structure:

SELECT * FROM <relations> WHERE <predicates> WITH_CONSTRAINTS

SIMILARITY α = <X> AND

DISTANCE_FUNCTION = <Y> AND

<AGG_OP>(<attribute>) = G;

The new keyword WITH_CONSTRAINTS indicates that there are user defined constraints over the

result of the query. The first user-defined constraint is the weight of similarity (i.e., α), where <X> is

a value between (0-1).

The second parameter in the model is the choice of a distance function <Y>. The distance function

(i.e., D()) is used as a measure of the similarity deviation between an input query I and a refined query

R, where a high distance corresponds to a high similarity deviation, and vice versa. The similarity

measures have been discussed above in Section 3.2.2.

Lastly, there is the aggregate constraint <AGG_OP>(<attribute>) = G. From the five standard

SQL aggregate operators (i.e., count, sum, avg, min, max), users can specify an aggregate

operator for the aggregate constraint G over any attribute in the database. Also, users are allowed

to specify multiple aggregate constraints at once:

<AGG_OP>1(< attribute >) = G1

<AGG_OP>2(< attribute >) = G2

..

..

<AGG_OP>n(< attribute >) = Gn

With the presence of multiple aggregate constraints, the deviation function in Eq. 3.2.4 must be
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extended to account for all n aggregate constraints:

∆G
R =

1
n

n

∑
i=1

1
z
|Gi−GiR| (3.2.6)

In Eq. 3.2.6, ∆G
R is the average of the deviations of all n aggregate constraints.

Example 3.1. Based on Example 1.1, the scientist might use the following query to find the desired

sky region:

SELECT * FROM SDSS.Star WHERE ( ra ≥ 179.5 and ra ≤ 182.3 )

and ( dec ≥ 1.24 and dec ≤ 1.86 )

WITH_CONSTRAINTS

SIMILARITY α = 0.5 AND

DISTANCE_FUNCTION = L1-norm AND

COUNT(*) = 1000 AND

AVG(brightness) = 2.3;

Clearly, one can see that her two aggregate constraints are 1000 objects and average brightness

equals 2.3, respectively. Also, she prefers a result that satisfies the aggregate and similarity

constraints equally (i.e., α = 0.5). �

In the following sections, we present our contributions towards the Similarity-aware,

Aggregate-based Query Refinement problem defined in Def. 3.1. First, in Section 3.3 we discuss

a special case of the Similarity-aware, Aggregate-based Query Refinement problem, where the

aggregate constraint is the cardinality of a query’s result. Then, in Section 3.4 we address the general

case of this problem where aggregate constraints can be generated using the standard SQL aggregate

functions. We also demonstrate the applicability of our proposed techniques for the Similarity-aware,

Aggregate-based Query Refinement problem in Section 3.5.
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3.3 SAQR Schemes

Query Refinement techniques enable databases users to automatically adjust their queries so that the

queries results satisfy some user-defined constraints. Setting a constraint on the cardinality of the

query result is one example of such constraints, which provides practical solutions to the problem

of queries returning too many or too few answers, and has recently attracted several research efforts

(e.g., [79, 14, 123, 78]).

Towards this, it has been shown that simple local search techniques based on greedy heuristics

(e.g., Hill Climbing) often provide efficient and effective solutions to the cardinality-based query

refinement problem [14]. In particular, the relationship between the possible refined queries and their

corresponding cardinalities exhibit a monotonic pattern [14], which makes it practical to apply local

search methods.

These techniques, however, are oblivious to the (dis)similarity between the input query and its

corresponding refined version. That is, to meet the cardinality constraint, the generated refined query

might often be very far (i.e., dissimilar) from the input query. While the (dis)similarity between two

queries can be quantified using several alternative measures (e.g., [118, 98, 57, 90, 123]), it should be

clear that, irrespective of the adopted similarity measure, a refined query that is very different from

the input one will have a very limited benefit to the end user and is often rendered useless.

To address the limitation of current cardinality-based QR techniques, we propose to include users’

preferences in refinement, in which the user satisfaction is measured in terms of both: 1) meeting some

specified cardinality constraint on the refined query, and 2) maximizing the similarity between the

submitted input query and its corresponding refined one. Achieving such goal is rather a challenging

task as it would require an exhaustive examination of the large space of possible query refinements.

In particular, the monotonic property exhibited by the cardinality constraints no longer holds for

our dual-criteria objective, in which cardinality is combined with similarity. Hence, current QR

techniques that are based on local search heuristics have higher chances of meeting a local minima and

falling short in finding a refined query that strikes a fine balance between minimizing the deviation in

cardinality and maximizing the similarity.

Motivated by that challenge, we propose a novel scheme called Similarity-aware Query

Refinement (SAQR), which aims to balance the tradeoff between satisfying the cardinality and

similarity constraints imposed on the refined query so that to maximize its overall benefit to the user.

In the following subsections, we formally define the special case of Similarity-aware,

Aggregate-based Query Refinement problem, which captures the user’s constraints on both cardinality

and similarity. Then, we present innovative schemes called SAQR, which utilizes pruning techniques
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based on both similarity and cardinality to efficiently formulate a refined query that meets the user’s

constraints. Further, we show how SAQR employs a hierarchical representation of the refined queries

search space, which allows for significant reduction in the cost incurred by SAQR while maintaining

the quality of its solution. We demonstrate the consistent, significant gains provided by SAQR

schemes when compared to existing QR techniques by conducting extensive experiments on the

TPC-D benchmark database.

3.3.1 Problem Statement

As mentioned above, setting a cardinality constraint on a query’s result is a special case of the problem

defined in Def. 3.1. Formally:

Definition 3.2. Given a database B, an input conjunctive query I, a distance function D(), and

a cardinality constraint K over the result I(B), the goal is to find R that satisfies the cardinality

constraint K while minimizing D(R, I). �

Given the cardinality constraint K, we rewrite Eq. 3.2.4 and Eq.3.2.5 to be as follows:

∆K
R =

1
z
|K−KR| (3.3.1)

∆R = α∆S
R +(1−α)∆K

R (3.3.2)

where the cardinality constraint K is the corresponding aggregate constraint G defined in Def. 3.1,

K =count(*), and ∆K
R is the deviation in cardinality. Hence, the goal is to find R that minimizes ∆R.

Next, we introduce our two algorithms SAQR-S and SAQR-CS that aim to efficiently and

effectively achieve that goal. We discuss how the search space is represented, the optimization

techniques used by these two algorithms, and the properties and techniques that are used by our

algorithms in optimizing the search.

3.3.2 SAQR-S

In this section, we present our SAQR-Similarity scheme (SAQR-S for short, outlined in Algorithm

3.1.), which leverages the distance constraint to effectively prune the search space. Then, in the next

section, we present SAQR-CS, which extends SAQR-S by exploiting the cardinality constraint for

further pruning of the search space and higher efficiency.

Our similarity-aware query refinement problem, as defined in Eq.3.3.2, is clearly a preference

query over the query space R and naturally lends itself as a special instance of a Top-K or Skyline
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Algorithm 3.1 SAQR-S

1: Input: Input Query I, K, α , δ

2: Output: Refined Query Ropt , ∆min.
3: KI = getCardinality(I);
4: ∆S

I = 0.0; ∆I = α∆S
I + (1−α)∆G

I ;
5: ∆min = ∆I; ∆TA = 0.0;
6: Rc← GenerateQueries(I,δ );
7: while ( Rc 6= φ ) do
8: for ( all Ri in Rc ) do
9: ∆TA = α∆S

Ri
+(1−α)×0; . Compute threshold deviation for Ri

10: if ( ∆TA < ∆min ) then
11: KRi = getCardinality(Ri); . Call database layer
12: ∆Ri = α∆S

Ri
+ (1−α)∆K

Ri
;

13: if (∆Ri < ∆min) then . If Ri has better deviation than best
14: ∆min = ∆Ri; Ropt = Ri; . Store best deviation and its query

15: else
16: stop; . No ungenerated query will have deviation < ∆min

17: Rc← GenerateQueries(Rc,δ );
18: return Ropt , ∆min

queries. In particular, our goal is to search the query space R for the one refined query Ropt that

minimizes the objective function defined in Eq. 3.3.2.

Such query Ropt is equivalent to a Top-1 query over the total of two attributes: 1) similarity

deviation (i.e., ∆S
R), and 2) cardinality deviation (i.e., ∆K

R ). Ropt should also fall on the skyline

of a 2-dimensional space over those two attributes [47, 116, 118]. However, efficient algorithms

for preference query processing (e.g., [75, 32]), are not directly applicable to the similarity-aware

refinement of aggregation queries problem, for the following reasons:

1. For any query Ri ∈R, the values of ∆S
Ri

and ∆K
Ri

are not physically stored and they are computed

on demand depending upon the input query I and the specified cardinality constraint K.

2. In addition to the cardinality constraint K, computing ∆K
Ri

for any query Ri ∈ R, requires an

expensive probe to estimate the cardinality KRi = |Ri(B)| of query Ri.

3. The size of the query search space |R| is prohibitively large and potentially infinite.

To address the limitations listed above, we propose the SAQR scheme for similarity-aware

refinement of cardinality constraints. In particular, SAQR adapts and extends algorithms for

Top-K query processing towards efficiently and effectively solving the problem of similarity-aware

refinement with cardinality constraints. Before describing SAQR in details, we first outline a baseline

solution based on simple extensions to the Threshold Algorithm (TA) [31].
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Conceptually, to adapt the well-known TA to the query refinement model, each possible refined

query Ri ∈ R is considered as an object with two partial scores: 1) partial score based on deviation

in similarity (i.e., ∆S
Ri

), and 2) partial score based on deviation in cardinality (i.e., ∆K
Ri

). Those two

partial scores are maintained in two separate lists: 1) ∆S-list, and 2) ∆K-list, which are sorted in a

descending order based on their deviation.

Under the classical TA algorithm, the two sorted lists are accessed at parallel. When an object’s

partial score is retrieved from a list (i.e., either ∆S-list or ∆K-list ) by a sorted access, its other partial

score is also fetched from the other list by a random access and the object’s score is kept in a buffer

along with the object itself. A threshold value T is computed from the scores of the last seen objects

from the sorted access.

TA reports any objects in the buffer with a score above T, and terminates when the lists are

traversed to completeness or the number of required objects has been met.

Clearly, such straightforward conceptual implementation of TA is infeasible to the

similarity-aware refinement of cardinality constraints problem due to the three reasons listed earlier.

To address the first reason (i.e., absence of partial deviation values), SAQR-S generates the ∆S-list

on the fly and on-demand based on the input query I. In particular, given query I, it progressively

populates the ∆S-list with the distance between I and the nearest possible refined query Ri ∈R.

To control and minimize the size of the search space, a value δ is defined and the nearest query

is defined in terms of that δ . In particular, given an input query I, a first set of nearest queries is

generated by replacing each predicate ai ≤ xI
i with two predicates:

• ai ≤ xI
i + δ

• ai ≤ xI
i −δ

The same process is then repeated recursively for each set of generated queries.

Clearly, using δ allows for simply discretizing the rather continuous search space R. Hence, Rδ

can be perceived as a uniform grid of granularity δ (i.e., each cell is of width δ ). We note that at any

point of time, the ∆S-list is always sorted since the values in that list are generated based on proximity.

One approach for populating the ∆K-list is to first generate the distance ∆S-list and then compute

the corresponding ∆K
i value for each query Ri in the ∆S-list. Those values are then sorted in

descending order and the TA algorithm is directly applied on both lists. Clearly, that approach has

the major drawback of probing the database for estimating the cardinality of all the possible queries

in the new discretized search space. Instead, we leverage the particular Sorted-Random (SR) model

of the Top-K algorithm to minimize the number of those expensive estimation probes.
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Figure 3.3: The first three steps of TA-Algorithm under the SR Model with two list: access sorted
list(left) and random access list (right)

The SR model is particularly useful in the context of web-accessible external databases, in which

one or more of the lists involved in an objective function can only be accessed in random and at

a high-cost [75, 32, 47]. In that model, the sorted list (i.e., S) basically provides an initial set of

candidates, whereas random lists (i.e., R) are probed on demand to get the remaining partial values of

the objective function.

In our model, the ∆S-list already provides that sorted sequential access, whereas ∆K-list is clearly

an external list that is accessed at the expensive cost of probing the database. Under that setting, while

the ∆S-list is generated incrementally, two threshold values are maintained (as in [75, 32]):

• ∆min: The minimum calculated deviation ∆ that have been found so far.

• ∆TA: The minimum possible deviation ∆ of a query that is yet to be estimated.

The two thresholds listed above enable efficient navigation of the search space by pruning a

significant number of the queries in Rδ . This is achieved by means of a simple technique referred to

as Early Termination. Early termination kicks in when a query Ri is generated, and assumed to have
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zero cardinality deviation (Alg. 3.1, line 9), but its deviation threshold ∆TA is higher than or equal to

the best found query so far ∆min.

Figure 3.3 illustrates the first three steps of the SR Model with two lists: left-hand-side list

provides sorted access while the right-hand-side provides random access at high cost. Initially, the

two thresholds ∆min and ∆TA are set to 1. For simplicity, assume that the goal is to find the query’s

ID with the minimum deviation, i.e., find the minimum ∆ where ∆ = F1+F2. In the third step, the

algorithms finds out that query with ID 3 has a higher threshold ∆TA than ∆min. That is, the early

termination condition is met. Hence, the algorithms stops the search and ignores the rest of candidate

queries in the sorted list.

Theoretical Analysis: We next analyze the completeness and soundness of the algorithm SAQR-S

presented above. Recall that for any arbitrary input query I and a cardinality constraint K, SAQR-S

outputs the optimal refined query Ropt such that Ropt has the minimum possible deviation ∆min among

all candidate queries in the search space Rδ .

First, we prove SAQR-S convergences. The algorithm recursively generates candidate queries

(starting from I), and progresses by adding the new generated candidate queries into Rc. At each

iteration, a single candidate query Ri is evicted from Rc, then new candidate queries are generated by

refining Ri and are added to Rc. As long as Rc is not empty, the algorithm will not terminate. However,

the algorithm only adds candidate queries into Rc as long as they have not been visited before. Hence,

Rc will eventually become empty and the algorithm will converge. Moreover, the algorithm will

also converge once it finds a candidate query with a similarity deviation higher than the minimum

deviation found so far, i.e., if ∆TA is higher than ∆min then there is no other candidate query which

has a deviation less than ∆min (since SAQR-S iterates over candidate queries in ascending order based

on their similarity deviation).

Second, we prove that SAQR-S is complete, i.e., given an arbitrary input query and cardinality

constraint, it outputs the optimal refined query Ropt such that Ropt has the minimum possible deviation

∆min among all candidate queries in the search space Rδ . Given α , δ , K and an input query I, there

must be at least one refined query R ∈ Rδ in the δ approximated search space such that R has the

minimum possible deviation among all possible queries in the δ approximated search space, i.e.,

∃R ∈ Rδ such that R = Ropt . Assuming that α and K are set to zero, then Ropt is essentially any

refined query in Rδ with zero cardinality (or the minimum cardinality). One such refined query is a

query that is located at the bottom-left corner of the approximated search space. Let this query be RBL.

As SAQR-S progresses and iterates over candidate queries, ∆min decreases. Since α is set to zero, this

guarantee that SAQR-S will visit RBL (no queries will be pruned using the Early Termination test),

which has the minimum possible deviation. Hence, SAQR-S outputs complete and correct answer.
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It is also trivial to show that SAQR-S is complete when α is higher than zero. Note that when

α is higher than zero (e.g., α = 0.5) and K is set to zero, Ropt is no longer the candidate query with

zero cardinality. It is the one with the minimum cardinality deviation weighted by (1−α). Because

SAQR-S will visit all candidate queries (except the ones with a similarity deviation higher than the

best found deviation ∆min) then this guarantee that SAQR-S will come across the optimal refined

query with the minimum cardinality deviation weighted by (1−α).

Complexity Analysis: We analyze next the complexity of SAQR-S. In the worst case, SAQR-S will

visit all candidate queries in Rδ . The number of candidate queries in Rδ depends on the number of

predicates d and δ . Formally:

|Rδ |= (
1
δ
)1× (

1
δ
)2× ...× (

1
δ
)d = (

1
δ
)d

3.3.3 SAQR-CS

The SAQR-S scheme, presented in the previous section, basically leverages the deviation in distance

in order to bound the search space. Thus, it reduces the number of candidate refined queries to

be generated, and in turn, reduces the number of probes needed for cardinality estimation. The

underlying premise is that the optimal refined query Ropt is expected to be near the input query I.

Hence, the thresholds from the TA algorithm effectively represent cutoff points after which no further

refined queries need to be examined.

The SAQR-S scheme, however, still has two major drawbacks:

• It probes the database for estimating the cardinality for every candidate query Ri that survives

the early termination test, and

• The overall search space is still large despite of the discretization process.

In this section, we propose the extended SAQR-Cardinality/Similarity scheme (SAQR-CS for

short). This scheme is shown in Algorithm 3.2. At a high-level, SAQR-CS provides the following

features:

1. SAQR-CS exploits the monotonicity property of the cardinality constraint so as to provide

significant reductions in the search space, and

2. SAQR-CS employs a hierarchical representation of the search space that allows for adaptive

navigation and further reductions in the total cost.

In the following, we describe in details the two features listed above.
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Algorithm 3.2 SAQR-CS

1: Input: Input Query I, K, α , δ

2: Output: Refined Query R, ∆min
3: KI = getCardinality(I);
4: ∆S

I = 0.0; ∆I = α∆S
I + (1−α)∆K

I ;
5: ∆min = ∆I; ∆TA = 0.0;
6: H = δ ; h = 0.5;
7: Rc← GenerateQueries(I,h);
8: while (h≥ H) do
9: while ( Rc 6= φ ) do

10: for ( all Ri in Rc ) do
11: ∆TA = α∆S

Ri
+(1−α)×0; . Compute threshold deviation for Ri

12: if ( ∆TA < ∆min ) then
13: Ku

i = getUpperBound(Ri); . cardinality of closest query dominating Ri
14: Kl

i = getLowerBound(Ri); . cardinality of closest query dominated by Ri
15: ∆K

Ri
= estCardDev(Ku

i , Kl
i , K); . Estimate cardinality deviation

16: ∆Ri = α∆S
Ri
+(1−α)∆K

Ri
;

17: if ( ∆Ri < ∆min ) then
18: KRi = getCardinality(Ri); . Call database layer
19: ∆Ri = α∆S

Ri
+ (1−α)∆K

Ri
; . Compute exact deviation

20: if (∆Ri < ∆min) then
21: ∆min = ∆Ri; Ropt = Ri;

22: else
23: stop; . No ungenerated query will have deviation < ∆min

24: Rc← GenerateQueries(Rc,h);
25: clear(Rc); hprev = h; h = h/2; . Compute next’s level granularity
26: for ( each cell C in hprev ) do
27: Ri←C; . Each cell represents a query
28: Rc+ = GenerateQueries(Ri,h); . Generate queries for next level
29: Return Ropt , ∆min;

3.3.4 The Monotonicity Property

Consider a candidate query R with d conjunctive range predicates P1 ∧P2 ∧ ...∧Pd , such that each

predicate Pi is defined as: ai ≤ xR
i , for i 6= j, (similar to our query model presented in Section 3.2).

Further, assume that ni is the number of distinct values for attribute ai.

The space of possible cardinalities of query R can be modeled as d-dimensional n1× ...×nd grid

G [14]. The value of G [x1, ...,xd ] for 1≤ xi ≤ ni is precisely the cardinality of the query R when each

predicate Pi is instantiated with the xi-th smallest distinct value of attribute ai. Therefore, G satisfies

the following monotonicity property: G [x1, ...,xd ] ≤ G [y1, ...,yd ] when xi ≤ yi for every attribute ai

[14].
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Figure 3.4: Estimating upper and lower bounds of ∆Ri by using probed queries Rl and Ru.

3.3.5 Cardinality-based Pruning

SAQR-CS exploits the monotonicity property of the cardinality constraint so that to provide

significant reductions in the search space. In particular, if a candidate refined query Ri passed the early

termination test, SAQR-CS estimates a lower bound Kl
i and an upper bound Ku

i on the cardinality of

query Ri (i.e., Kl
i ≤ Ki ≤ Ku

i ).

Estimating those bounds is very efficient since it is completely based on the candidate queries that

have been examined so far and thus requires no probing of the database.

SAQR-CS exploits the monotonicity property as follows: it keeps track of the queries that have

been generated and examined while progressively populating the ∆S-list. Then, when a new query Ri

is generated, SAQR-CS sets the bounds Kl
i and Ku

i as follows (See Figure 3.4):

• Kl
i = Kl , where Kl is the cardinality of query Rl , which is the closest query dominated by Ri.

That is, when xl
j ≤ xi

j for every attribute a j.

• Ku
i = Ku, where Ku is the aggregated value of query Ru, which is the closest query dominating

Ri. That is, when xi
j ≤ xu

j for every attribute a j.

After finding the bounds Kl
i and Ku

i on the value of Ki, SAQR-CS then assesses the benefit of

probing the database to get an accurate estimate for the deviation of Ri. In particular, SAQR-CS

estimates the deviation of Ri given the possible range of the cardinality value [Kl
i – Ku

i ] it might have.

Thus, it is required to test if any value in that range can provide an overall deviation that is smaller

than the deviation achieved so far (i.e., ∆Ri < ∆min).

To perform that test, SAQR-CS initially retrieves the distance between Ri and I, i.e., ∆S
Ri

. Then,
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Figure 3.5: 2-Dimensional search space is decomposed into H levels, where the resolution of the top
level δ = 1, and the resolution of the bottom level H is δ = 1
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it calculates the minimum possible cardinality deviation ∆K
Ri

by estCardDev() using Kl
i and Ku

i , as

shown in Alg. 3.2, line 15.

The minimum possible cardinality deviation ∆K
Ri

is computed by Eq. 3.3.1 depending upon where

the cardinality constraint K lays within the range [Kl
i – Ku

i ]. Formally:

∆K
Ri
=



|K−Kl
i |

z if K < Kl
i

|K−Ku
i |

z if K > Ku
i

0 Otherwise

(3.3.3)

Finally, SAQR-CS substitutes ∆K
Ri

and ∆S
Ri

in Eq. 3.3.2 to estimate ∆Ri (Alg. 3.2 line 16). If ∆Ri

is less than ∆min, then Ri might provide a smaller deviation and the database is probed to retrieve its

actual cardinality (Alg. 3.2 line 18).

3.3.6 Hierarchical Representation of the Search Space

Clearly, the effectiveness of the bounds described above on pruning the search space depends on the

tightness of the cardinality bounds Kl
i and Ku

i . However, achieving such tight bounds is not always

possible when the candidate refined queries are generated in order of their proximity to the input

query I on a uniform grid with a constant width δ such as the one described in the previous section.

For instance, under that approach, a generated candidate query Ri that is positioned between the

input query I and the origin for the search space, will often have a loose lower bound Kl
i . Similarly, if

Ri is positioned between I and the limits of the search space, then it will have a loose upper bound of

Ku
i .

To achieve tighter bounds, SAQR-CS employs a hierarchical representation of the search space

based on the pyramid structure [4, 67] (equivalent to a partial quad-tree [68, 35]). The pyramid

decomposes the space into H levels (i.e., pyramid height). For a given level h, the space is partitioned

into 2dh equal area d-dimensional grid cells. For example, at the pyramid root (level 0), one cell

58



CHAPTER 3: SIMILARITY-AWARE AGGREGATE-BASED QUERY REFINEMENT

represents the entire search space, level 1 partitions space into four equal-area cells, and so forth.

To create the pyramid representation, SAQR-CS generates candidate queries recursively in

iterations using a dynamic δ . In particular, the value of δh in any iteration h is equal to 1
2h (see

Figure 3.5). The queries generated in iteration i are processed similar to SAQR-CS (as described in

the previous section). This is in addition to: 1) applying the cardinality-based pruning outlined above,

and 2) maintaining the minimum deviation ∆min across iterations.

The pyramid representation provides the following advantages:

• Effective pruning: the pyramid representation allows SAQR-CS to compute the cardinality

bounds Kl
i and Ku

i for a candidate query Ri based on already probed queries that are either at the

same level or higher levels in the pyramid. This provides better coverage of the search space

and tighter bounds.

• Efficient search: the pyramid representation allows SAQR-CS to quickly zoom-in to the area

where Ropt is located.

To understand how SAQR-CS employs the pyramid representation to achieve effective and

efficient search, assume Ropt is located somewhere in the third quarter (top-right) of the

highest-resolution grid in Figure 3.5, while the input query I is located at the first quarter (bottom-left).

Indeed, the pyramid representation allows SAQR-CS to jump quickly to where Ropt is located, since

it visits the search space level by level, from the lowest resolution to the highest.

Unlike SAQR-CS, SAQR-S sees the search space as one level in the highest resolution, and it

cannot jump to Ropt unless it visits all queries between Ropt and I. However, when Ropt is located

next to I (e.g., both of them are in the first quarter), SAQR-S will reach the optimal solution earlier

than SAQR-CS, because it takes SAQR-S only few steps to find it while SAQR-CS will have to go

through multiple steps, going from the top level of the pyramid to the bottom.

3.3.7 Experiments

Firstly, we present the experimental setup then we discuss the findings and results. The experiments

settings are summarized in Table 3.3.

Schemes: We have experimented with the following algorithms:

• Hill Climbing (HC): This is the scheme proposed in [14] to automatically generate queries

with cardinality constraints for DBMS testing. HC discretizes the search space and navigates it

in a greedy manner until no further reduction in deviation is attainable. However, in this work
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Parameter Range Default

Similarity weight (α) 0.0–1.0 0.5

Dimensions (d) 1–4 2

Grid resolution (δ ) 1/25–1/2 1/25

Database Size (|B|) 60k, 600k, 3M, 6M tuples 60k tuples

Table 3.3: Evaluation Parameters.

we have extended the HC scheme proposed in [14] use our similarity-aware objective function

(i.e., Eq. 3.3.2).

• SAQR-S: Our proposed scheme, which utilizes similarity for navigating and pruning the search

space (as described in Section 3.3.2).

• SAQR-CS: Our proposed scheme, which extends SAQR-S and utilizes both similarity and

cardinality for navigating and pruning the search space (as described in Section 3.3.3).

All algorithms were implemented as a Java front-end on top of the MySQL DBMS.

Datasets: In our experiments, we use real TPC-D datasets of different scales. The dataset is created

similar to [79], using the publicly available tool [19] which provides the capability of generating

datasets with different scales. In our experiments, all the numerical columns in the generated tables

are normalized in the range [0-1].

Queries: To cover a large spectrum of query contraction and expansion scenarios, we generated a set

of 100 <query, cardinality> pairs. Each pair is an input query together with its cardinality constraint

generated according to a uniform distribution.

Performance Measures: Performance is evaluated in terms of:

• Average cost (CR): That is the average number of probes (calls) made to the database evaluation

layer for refining all the queries in the workload.

• Average deviation (∆R): That is the average deviation experienced by all the queries in the

workload, where the deviation perceived by each query is computed according to Eq. 3.3.2.

Impact of Similarity Weight

In Figures 3.6 and 3.7, we use the default experiment settings while varying the similarity weight α

from 0.0 to 1.0.
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Figure 3.6: Average deviation while varying similarity weight α
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Figure 3.7: Average cost while varying similarity weight α

Figure 3.6 shows that all schemes follow the same pattern: deviation increases with α until it

reaches a critical point after which it rebounds. The reason behind this pattern is that minimizing

deviation in cardinality while maximizing similarity are two objectives that are typically in conflict.

The degree of conflict is determined by α , for example at α = 1 there is no conflict and the total

deviation is based on similarity. Hence, SAQR easily finds a refined query that satisfies K, though it

might be very dissimilar from the input. For α around 0.5, both objectives are of equal importance,

making it hard to find a refined query that satisfies them both simultaneously leading to higher

deviation (compared to α = 1). However, SAQR effectively balances that tradeoff and finds a

near-optimal solution. For instance, when α equals 0.5, SAQR-CS achieves 30% better deviation

than HC.
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Figure 3.7 shows the high efficiency of both HC and SAQR-CS compared to SAQR-S. However,

at higher values of α , the cost of SAQR-S is relatively low. This is because SAQR-S traverses the grid

cells starting from the closest point to the input query (smallest distance) to the furthest one. Thus,

assigning higher weight to deviation in similarity increases the chance for SAQR-S to satisfy the early

termination condition.

Setting the value of α depends on the user preference of similar refined queries to her initial

query. As a guideline, setting α to zero provides refined queries that satisfy the cardinality constraint

regardless of the similarity to the input query. As the similarity weight is increased from zero to one,

the resultant refined queries are more similar the input queries, however, this introduces a conflict on

satisfying the cardinality constraint, which is apparent in the experiment above.

Impact of Grid Resolution

In this experiment, we examine the impact of the grid resolution δ on the performance metrics.
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Figure 3.8: Average deviation while varying grid resolution δ
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Figure 3.9: Average cost while varying grid resolution δ

As shown in Figure 3.8, all three schemes exhibit a direct correlation between δ and the

average deviation. This relation is natural because when δ is increased, the search space is highly

approximated, which essentially increases the probability of missing the exact target constraints, and

vice versa. Figure 3.9 shows that the average cost drops as δ is increased. For instance, the average

cost provided by SAQR-S is reduced by 72% when δ increased from (1
2)

5 to (1
2)

4, while the reduction

in the costs of HC and SAQR-CS is 31% and 33%, respectively. This is because the total number of

cells in the grid is decreased, leading to less number of cells to be scanned. Looking at both Figures

3.8 and 3.9 uncovers the trade-off between the deviation and cost metrics which is controlled by δ .

Specifically, users should tune δ to control the trade-off between the deviation and cost such that

lowering the value of δ provides more accurate result at the expense of more cost.
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Impact of Dimensionality
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Figure 3.10: Average deviation while varying number of dimensions d
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Figure 3.11: Average cost while varying number of dimensions d

In this experiment we measure the effect of dimensionality d on performance, while δ = (1
2)

3.

Figure 3.10 shows that SAQR achieves better deviation than HC for all values of d. For instance, when

all queries include four dimensions, SAQR-CS and SAQR-S reduced the deviation by 28% when

compared to HC. The reason for the poor performance of HC is that when the number of dimensions

is increased, there are more possible refined queries, which increases the chances for HC to get

stuck at local minima and miss the optimal solution. Figure 3.11 shows that, in general, SAQR-CS

outperforms all other schemes. For instance, for four-dimensional queries, SAQR-CS reduced the

cost compared to HC and SAQR-S by 60% and 95%, respectively. Clearly, these reductions are due

to the cardinality-based pruning and pyramid structure techniques employed by SAQR-CS.
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Impact of Database Size

Database Size Probing time (ms)

60K 21

600K 338

3M 1647

6M 3237

Table 3.4: Time per probe in milliseconds for TPC-D database in different scales
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Figure 3.12: Average cost for TPC-D database in different scales

In this experiment, we generated four scaled versions of the TPC-D database of sizes 60K, 600K, 3M,

and 6M tuples. As expected, Figure 3.12 shows the number of probes for each scheme is constant for

all four databases. Clearly, this is because the search space of the refined queries remains the same for

all sizes. However, as it is also expected, the database size determines the amount of data processed in

each probe and in turn, the probing time (as shown in Table 3.4). In particular, for a machine loaded

with Intel Core i7 3.40GHz CPU, 16.0 GB RAM, and Windows 7 OS, Table 3.4 shows the time per

probe for the different database sizes. Combining the results in Figure 3.12 and Table 3.4 shows that

SAQR-CS allows for scalable and practical query refinement.
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Value range

z-value
z=0 z=1 z=2 z=3

0.0 – 0.2 19% 21% 10% 2%

0.2 – 0.4 20% 23% 23% 14%

0.4 – 0.6 20% 16% 2% 0%

0.6 – 0.8 20% 23% 61% 83%

0.8 – 1.0 21% 17% 3% 0%

Table 3.5: A histogram of the data distribution of different z-value for quantity attribute in
the lineitem table. z=0 represents a uniform distribution, while z=3 represents a highly skewed
distribution

Impact of Data Skewness

In this experiment we report the impact of data skewness on our proposed algorithms. We generated

skewed data using the publicly available tool [19], which provides the capability of generating TPC-D

datasets with different z distributions. Table 3.5 shows a histogram of skewed distribution of the

quantity attribute in the lineitem. Note that z = 0 represents a uniform distribution, while z = 3

represents a highly skewed distribution.

For this particular experiment, we set α = 0 to study the impact of data skewness on SAQR-CS

pruning power. The remaining parameters are set to default. Also, we experimented with four z-value

skewed distributions: 0, 1, 2 and 3.

As shown in Figure 3.13, the average number of probed queries varies with different z-values. In

particular, the cardinality-based pruning technique implemented by SAQR-CS benefits from skewed

data since the estimated cardinality bounds becomes tighter when data exhibits skewness. However,

as Figure 3.14 shows, the deviation increases when data exhibit skewness. In highly skewed data,

it is very difficult for any algorithm to find an optimal query that achieves the cardinality constraint.

Specifically, when expanding or contracting a predicate of a candidate query over skewed data, the

cardinality of this query will significantly change. Such significant changes in cardinality prevents any

algorithm from getting very close to the cardinality constraint. Alternatively, expanding or contracting

a predicate of a candidate query over uniformally distributed data will slightly change the cardinality

of the query, hence, there is a high chance to achieve the cardinality constraint.

Results Discussion

Overall, SAQR-CS outperforms SAQR-S and HC in terms of deviation and cost, due to its

cardinality-based pruning technique. Increasing the grid resolution δ results in high costs but lower
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Figure 3.14: Average deviation while varying z-value

deviation for all algorithms. The number of probed queries for all algorithms remains the same for

different dataset sizes because the search space is determined by δ and the number of dimensions d.

Skewed data slightly increases SAQR-CS pruning power, however, the average deviation increases

since it becomes more difficult to find a refined query that meets the cardinality constraint.
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3.4 EAGER Schemes

In this section we present our contribution towards the Similarity-aware, Aggregate-based Query

Refinement problem formally defined in Section 3.2.3:

Definition 3.3. Similarity-aware, Aggregate-based Query Refinement problem: Given a database

B, an input conjunctive query I, a distance function D(), and an aggregate constraint G over the

result I(B), the goal in the Similarity-aware, Aggregate-based Query Refinement problem is to find R

that satisfies the aggregate constraint G while minimizing D(R, I). �

Note that this problem preserves the hardness of the special case addressed earlier in Section 3.3.1.

Specifically, all aggregate constraints addressed in the above problem follow the same monotonic

property of cardinality. Using a Hill Climbing approach to search for an optimal query (given an

aggregate constraint) will return sub-optimal solutions when similarity is included in the objective

function.

Our proposed efficient refinement of aggregates constraints schemes (EAGER) extend SAQR

schemes (Section 3.3) to cater for aggregate constraints. Similar to SAQR-S, EAGER-S employs

the similarity constraint to prune the search space while EAGER-GS extends SAQR-CS and likewise

employs the similarity and aggregate constraints to achieve efficient query refinement. We present

approximation and optimization techniques that EAGER-GS employs as well to provide efficient and

effective solutions for the Similarity-aware, Aggregate-based Query Refinement problem.

First, we investigate the monotonicity property of the aggregate operators sum, avg, min, max,

which EAGER utilizes to compute lower and upper bounds of the aggregate constraints. We also

provide a workaround for the aggregate avg() since it is not a monotonic function.

3.4.1 Aggregates Constrains Bounds

The monotonicity property introduced in Section 3.3.4 for computing lower and upper bounds for the

cardinality constraints can also be used for the aggregate constraints sum, avg, min, max. Similar

to SAQR, these bounds enable EAGER to prune unqualified candidate queries without probing the

database to estimate their aggregate values. Specifically, when a candidate query Ri is generated,

EAGER sets the aggregate bounds Gl
i and Gu

i as follows:

• Gl
i = Gl , where Gl is the aggregate value of query Rl , which is the closest query dominated by

Ri. That is, when xl
j ≤ xi

j for every attribute a j.

• Gu
i = Gu, where Gu is the aggregate value of query Ru, which is the closest query dominating

Ri. That is, when xi
j ≤ xu

j for every attribute a j.
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However, the operator avg(ai) is a special case, as the monotonicity property does not hold for

average. Hence, Gl
i and Gu

i for avg(ai) are estimated differently than the other aggregate operators.

To find Gl
i and Gu

i for avg(ai), the average of each probed query R j is stored as count(ai) and

sum(ai). Then, the lowest average of Ri is computed as if Ri has the count(ai) of the upper bound,

and the sum(ai) of the lower bound. Analogously, the highest average of Ri is computed as if Ri has

the count(ai) of the upper bound, and the sum(ai) of the lower bound plus the maximum value of ai

times the difference between the upper and lower bound count(ai). Formally:

Gl
i =

Gl .sum(ai)

Gu.count(ai)
(3.4.1)

Gu
i =

Gl .sum(ai)+V
Gu.count(ai)

(3.4.2)

Where V is the difference between Gu and Gl count(ai) aggregate.

After finding the bounds Gl
i and Gu

i on the value of Gi, EAGER (similar to SAQR) assesses the

benefit of probing the database to get an accurate estimate for the deviation of Ri.

Multiple Aggregate Constraints: In practice, EAGER schemes can be easily extended to support

multiple aggregate constraints. This can be achieved by replacing the deviation ∆G
R in Eq. 3.2.4 with

Eq. 3.2.6. Further, EAGER-GS can avoid probing the database layer for an aggregate G if its lower

and upper bounds are exactly the same, i.e., if Gu = Gl . For ease of presentation and simplicity, we

consider only one aggregate constraint in the rest of this chapter.

3.4.2 Optimization Techniques

While EAGER is all about reducing the cost without effecting the deviation, still, there is a need for

more cost reductions. The reason is, in an interactive context, users expect to see results instantly.

Hence, in the next section, we describe optimization and approximation techniques to increase the

efficiency of our scheme EAGER. We propose an optimization technique to reduce the cost of

refinement with a small footprint of storage and processing. Specifically, EAGER scheme materializes

a set of selected candidate queries before exploring the search space to utilize them efficiently. Also,

we propose approximation techniques for EAGER to improve the user experience with the scheme at

an acceptable level of accuracy.

Level-based Materialization

A straightforward method to achieve less cost is to materialize candidate queries in the search space

before running the schemes. Hence, when a candidate query is generated, if it happens to be

69



CHAPTER 3: SIMILARITY-AWARE AGGREGATE-BASED QUERY REFINEMENT

materialized, then there is no need to call the database layer to retrieve its aggregate.

We have utilized this method in EAGER scheme by materializing candidate queries based on

levels chosen by the user. As shown previously in Section 3.3.6, the search space traversed by

EAGER scheme is represented as a hierarchical structure. This structure consists of multiple levels,

as illustrated in Figure 3.5. Users can specify which level(s) are to be materialized beforehand.

Consequently, all candidate queries that belong to the chosen levels are probed in advance and used

by the scheme at no additional cost.

The materialized candidate queries which EAGER-GS uses provides two ways to reduce the

incurred cost: These two ways are:

• Direct Hit: The current candidate query Ri is already materialized, thus no need to call the

database layer.

• Aggregate Bounds: Better aggregate bounds are found by utilizing the materialized queries

which result in a better estimation of the deviation and ultimately lower cost.

In EAGER-S though, it only benefits from materialization if the current candidate query Ri is

already materialized (i.e., direct hit). From experiments, we confirm and show that EAGER-GS

benefits the most of the materialized queries when compared with EAGER-S. Also, we address the

additional cost of materialization, and show through our experiments that materializing queries pay

off after only a couple of runs.

3.4.3 Approximation Techniques for EAGER-GS

The design of EAGER-GS enables it to improve by means of approximation techniques. The

proposed approximation techniques focus on reaching the objective with lower cost, while sometimes

sacrificing on the deviation. In particular, we propose two approximation techniques for EAGER-GS,

one to control the inverse relationship between minimizing the deviation and cost of refinement, while

the other technique is to score cells in each level, and select only the most promising ones for next

iterations.

The first technique relates to when EAGER-GS should stop the search process. As illustrated in

Algorithm 3.2, EAGER-GS stops when it reaches the end level H, or in other words: the resolution

of the lowest level in the pyramid. However, this condition was implemented so that we can have a

comparable algorithm against the other baseline algorithms. Hence, we have improved EAGER-GS

and changed its termination condition to be controlled by a parameter that is set by the user.
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Algorithm 3.3 EAGER-GS with Stopping Condition (λ )

1: Input: Input Query I, G, α , δ , λ

2: Output: Refined Query R, ∆min
3: GI = getAggregate(I);
4: ∆S

I = 0.0; ∆I = α∆S
I + (1−α)∆G

I ;
5: ∆min = ∆I; ∆TA = 0.0;
6: H = δ ; h = 0.5;
7: SC = ∆I ∗λ . Initializing Stopping Condition
8: Rc← GenerateQueries(I,h);
9: while (∆min ≥ SC) do . Stopping Condition

10: ... . Similar steps to SAQR-CS in Algorithm 3.2 lines 9-28
11: Return Ropt , ∆min;

The second approximation technique is inspired by another work [79] where only the top b cells

with the highest scores are marked to be explored in the next iteration. Next, we explain in details the

previously mentioned approximation techniques.

EAGER-GS Stopping Condition

As explained in Section 3.3.6, EAGER-GS stops when it hits the lowest possible resolution in the

hierarchical structure of the search space. That design decision was made in order to have a fair and

meaningful comparison between EAGER-GS and the other schemes.

However, as a standalone scheme, EAGER-GS’s stopping condition is not related to the current

resolution or the pyramid level. Therefore, we have introduced (λ ) as a new parameter to control the

stopping condition in EAGER-GS. Technically, (λ ) provides a trade-off between the deviation and

cost, i.e., it controls the inverse relationship between minimizing the deviation and cost of refinement.

Recall that EAGER-GS traverses the search space based on the pyramid structure, i.e., it starts

from the highest level of the pyramid and goes down to the lowest level. Though, (λ ) is not based on

reaching a specific level in the pyramid. Instead, it is based on how much EAGER-GS has improved

(or reduced) the input query’s deviation, i.e., the scheme will stop the search once it finds a query with

a deviation less than or equal to λ% of the input query’s deviation. Specifically, EAGER-GS halts the

search if the current refined query Ri has a deviation less than or equal to (∆I ∗λ ). Setting (λ ) to zero

is an extreme case where the solution is not attainable. At the other extreme, setting (λ ) to one means

returning the same input query as the optimal solution.

In the experiments, we show the gains in efficiency against the loss in effectiveness controlled by

λ .
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Selecting Top Cells

In the cells exploration phase (Alg. 3.2 lines 26-28) EAGER-GS considers all cells in the current level

to be explored. Nevertheless, selecting the most promising cells (according to an associated score) to

be explored rather than selecting all the cells provides a tradeoff between efficiency and effectiveness.

Inspired by the work in [79], we adapted a similar logic, i.e., to score the cells and select only the

topb cells out of them for the next iteration. However, differently from that work, the score of each

cell is based on our objective function presented in Eq. 3.2.5.

The score for a cell C is computed based on the two constraints: aggregation and similarity.

Generally, we can estimate a minimum bound and a maximum bound deviation of those two

constraints for any given C, similar to the query-level bounds described in Section 3.4.1, but at the

cell-level.

The intuition is that a cell’s score represents either the minimum deviation any query inside that

cell could have (i.e., minimum bound deviation), or the maximum deviation any query inside that cell

could have (i.e., maximum bound deviation). Specifically, minimum and maximum bound deviation

of C are found by the following equation:

∆C = α∆S
C +(1−α)∆G

C (3.4.3)

On the one hand, ∆min
C (i.e., minimum bound deviation) ∆S

C and ∆G
C are the minimum similarity

deviation of C and the minimum aggregate deviation among all queries inside C, respectively. On the

other hand, in case of ∆max
C , ∆S

C and ∆G
C are the maximum similarity deviation of C and the maximum

aggregate deviation among all queries inside C, respectively.

With those two bounds ∆min
C and ∆max

C , EAGER-GS has the capability to order cells depending

upon ∆min
C , ∆max

C , or alternatively using the average of the them. Thus, we extend EAGER-GS to score

the cells using the maximum and the average bounds, since these two provide better ordering of cells

when compared to the minimum bound, as the minimum bound assumes a best case scenario for a

cell, which might not be true. The steps for scoring the cells are listed in Algorithm 3.4. Notice how

only the topb cells are selected to generate the next candidate queries, as shown in lines 4-6.

To evaluate this approximation technique and show its benefits, we have implemented the TQGen

scheme [79]. However, since this scheme was proposed to address the problem of cardinality-based

query refinement only, its objective, pruning and scoring techniques were solely based on cardinality,

without considering other aggregates or similarity at all.

Therefore, we have adjusted TQGen to address the aggregates and similarity constraints in its

objective, and the pruning and scoring techniques, for the sake of a fair comparison to EAGER-GS.
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Algorithm 3.4 Cell Scoring
1: for ( each cell C in hprev ) do
2: ∆C← Score(C); . Score each cell using Eq. 3.4.3
3: DS← (C,∆C); . Store in ordered data structure DS
4: for ( first topb cells C1,C2, ...,Ctopb in DS ) do
5: Ri←Ci; . Each cell represents a query
6: Rc+ = GenerateQueries(Ri,h); . Generate queries for next level

Since TQGen is defined to work on multiple cardinality constraints for multiple sub-expressions

queries, we mapped the multiple constraints to be the aggregate constraint G and similarity, i.e.,

two constraints. In the following, we explain the modifications that we made to TQGen to have a

version comparable to EAGER-GS.

Firstly, the objective function used in TQGen is based on cardinality only. Therefore, we have

replaced it with our objective function that considers similarity along with other aggregates, as

specified in Eq. 3.2.5.

Secondly, TQGen utilizes a scoring function to score the cells in order to avoid an exhaustive

search strategy. That is, during the exploration of the search space, all cells in level h are scored based

on the number of cardinality constraints that a cell bounds, and then the topb cells are selected for

the next iteration. However, in our problem’s setting, we have only one aggregate constraint for each

input query. Given such setting, all cells that bound the constraint will have the exact same score. In

such cases, TQGen uses a cardinality distance to score those cells given multiple constraints.

For the sake of a fair comparison, we have proposed similarity as a second constraint for scoring,

along with the aggregate constraint. Hence, the score for a cell C in TQGen scheme becomes the

weighted standard deviation of those two constraints. Specifically:

Score(C) =
∑

k
i=1 wi(xi− x̄)2

∑
N
i=1 wi

(3.4.4)

Where k is the number of constraints, xi and wi are the value and weight of the constraint i,

respectively.

Finally, we come to the third adjustment. In TQGen scheme, to prune a cell C, it firstly computes

the error of the lower bound of C and then compares it against the best error found so far Ebest . If it

is worse than Ebest , then the cell can be safely pruned and it will not be explored further. The error

of the lower bound of C is similarly calculated to ∆min
C . Thus, if ∆min

C is higher than ∆min, cell C is

pruned and the candidate queries within that cell are not explored.
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Parameter Range Default

Deviation weight (α) 0.0–1.0 0.5

Dimensions (d) 1–5 4

Number of input queries - 100

Grid resolution (δ ) 1/25–1/2 1/23

Predicates Weights (wi) 0–1 1
d

Database Size (|B|) 100K, 1M, 4M, 8M 100K

Table 3.6: Evaluation Parameters

3.4.4 Experiments

We have implemented EAGER as a Java front-end on top of the MySQL database management

system. We have evaluated the performance of EAGER under various workload settings. Table 3.6

summarizes all the controlling parameters used in our experiments.

Schemes: In our experiments, the following schemes are compared:

• Hill Climbing (HC): This is the scheme proposed in [14] to automatically generate queries

with cardinality constraints for DBMS testing. However, in this work we have extended HC

to use our similarity-aware objective function for different aggregates Eq. 3.2.5. HC navigates

the search space depending upon an initial step in a greedy manner until no further reduction

in deviation is attainable. Then, it reduces the step size and continue to greedily navigate the

search space.

• EAGER-S: Our scheme, which utilizes similarity for navigating and pruning the search space.

• EAGER-GS: Our scheme, which extends EAGER-S and utilizes both similarity and aggregate

bounds for navigating and pruning the search space.

• TQGen: A best-effort algorithm proposed in [79] which utilizes heuristics to find queries that

approximately satisfy cardinality constraints. We discussed earlier our modified version of

TQGen in Section 3.4.3.

To achieve a fair comparison between the different schemes, EAGER-GS is tuned so that the cell

width at the bottom layer of the pyramid structure is equal to δ , while EAGER-S uses the cell width δ

for its grid. Meanwhile, HC is modified to stop when its step size is equal to δ . Hence, the maximum

resolution achieved by EAGER-GS and HC is the same as that of EAGER-S.
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Databases: In our experiments, we use the publicly available database: Sloan Digital Sky Server

(SDSS)1. Specifically, we are using the Star view from the PhotoPrimary table which has the

brightness properties of stars along with their coordinates. Note that all the numerical columns in

the databases are normalized in the range (0-1).

Queries: To cover a large spectrum of query contraction and expansion scenarios, we generated

a set of 100 <query, aggregate> pairs. In particular, each pair is an input query together with its

aggregate constraint. The queries are generated according to a uniform distribution over the query

space, whereas the aggregate constraints are generated according to a uniform distribution over the

database.

Performance Measures: We evaluate the performance of the above schemes in terms of the following

metrics:

• Average Cost (CR): That is the average number of probes (calls) made to the database evaluation

layer for refining all the queries in the workload.

• Average deviation (∆R): That is the average deviation experienced by all the queries in the

workload, where the deviation perceived by each query is computed according to Eq. 3.2.5.

Aggregate Operators: While we have experimented with all standard SQL aggregate operators:

(count, sum, min, max, avg), we only report the results for (count, max, avg) as sum and min

results are similar to count and max, respectively. If no aggregate operator is explicitly specified, it is

count by default .

Impact of Similarity Weight (α)

In the first set of experiments, we measure the impact of the similarity weight (α) on our two

performance measures (i.e., average deviation and cost) while d = 2 for three aggregate operators:

count, max, avg.

The deviation Figures 3.15, 3.16 and 3.17 show a common trend for the average deviation:

deviation increases while α approaches 0.5 - 0.6, then it starts to decrease. The reasons is, the two

constraints (similarity and aggregate constraints) are at odds with each other, i.e., satisfying one of

them conflicts with satisfying the other. The peak of this conflict is observed when α = 0.5− 0.6.

Moreover, the figures shows how HC can easily get stuck at a local minima when α > 0, which

results in deviating from the optimal solution found by EAGER-S and EAGER-GS. For instance,

1http://www.sdss.org
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Figure 3.15: Average deviation while varying similarity weight α for count
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Figure 3.16: Average deviation while varying similarity weight α for max

when α = 0.5, EAGER algorithms can improve the deviation by 14%-20% in some instants of the

workload.

In regards to the second performance measure, i.e., average cost, Figures 3.18, 3.19 and 3.20

illustrate the efficiency of EAGER-GS when compared to EAGER-S and HC. This is due to the

effective aggregate bounds and the hierarchical representation that EAGER-GS is based on. Also, the

figures shows that the general cost trend of EAGER-S and EAGER-GS is different than that of HC.

Specifically, the two algorithms EAGER-S and EAGER-GS benefit from higher similarity weight

in pruning more candidate queries, while HC’s pruning power seems relatively constant. This is

because HC is implemented to stop when it reaches the same maximum resolution as in EAGER-S and

EAGER-GS. Hence, even if HC get stuck at a local minima before reaching the maximum resolution,

it will keep in exploring the search space with finer δ s with the hope of finding a better solution.

As Figures 3.20 and 3.17 show, when α = 0, EAGER-GS exhibits almost double the cost of HC to

find the same solution. This is due to the loose aggregate bounds for avg defined in Eq. 3.4.1, which

reflects how difficult it is to find tight bounds for avg aggregate constraint. Though, when α ≥ 0.3,
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Figure 3.17: Average deviation while varying similarity weight α for avg
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Figure 3.18: Average cost while varying similarity weight α for count

EAGER-GS dominates HC and EAGER-S in the two performance measures.

Impact of Dimensionality (d)

Next, we test the impact of dimensionality d on the performance of the compared algorithms while

α = 0.5. In Figures 3.21 and 3.22, HC manages to find the optimal solution when d = 1, just as

EAGER algorithms, since it is not possible to get stuck at a local minima.

However, for d > 1, we can clearly see that HC deviates from the optimal solution found by

EAGER algorithms. Note that since avg aggregate operator is not monotonic, even when there is one

dimension, HC deviates from the optimal solution, as shown in Figure 3.23.

Figures 3.24, 3.25 and 3.26 are a numerical proof of the complexity for this refinement problem:

the cost of navigating the search space increases exponentially with d. Also, Figures 3.24 and 3.25

show the dominating efficiency of EAGER-GS due to its effective pruning techniques. Though, the

aggregate bounds for avg become less effective, specially with higher d. For instance, as Figure 3.26

shows, when d = 5, EAGER-GS’s cost is almost the double of HC, due to the loose bounds defined in
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Figure 3.19: Average cost while varying similarity weight α for max
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Figure 3.20: Average cost while varying similarity weight α for avg

Eq. 3.4.1 for avg aggregate operator. Nevertheless, despite the high cost, EAGER-GS achieves 24%

better deviation than HC.

Impact of Grid Resolution (δ )

Recall that parameter δ specifies the grid resolution of the search space. As mentioned before, it was

fixed to the default value throughout all the experiments introduced so far. In this experiment though,

we want to examine the impact of δ on the performance metrics. Hence, we varied δ in the range

1/25−1/2.

In Figure 3.28, the x-axis shows the variable δ and the average cost is shown on the y-axis.

Clearly, the average cost drops significantly when δ is increased for all schemes. For instance, the

average cost provided by EAGER-S is reduced by 70% when δ is increased from 1
25 to 1

24 , while the

reduction in the costs of HC and EAGER-GS is 10% and 53%, respectively.

The reason is, when δ is increased towards higher values, the total number of cells in the grid is

decreased, leading to smaller number of cells to be scanned, thus, the average cost is tightly related
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Figure 3.21: Average deviation while varying number of dimensions d for count
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Figure 3.22: Average deviation while varying number of dimensions d for max
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Figure 3.23: Average deviation while varying number of dimensions d for avg
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Figure 3.24: Average cost while varying number of dimensions d for count
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Figure 3.25: Average cost while varying number of dimensions d for max

 0

 500

 1000

 1500

 2000

 2500

 1  2  3  4  5

A
ve

ra
ge

 C
os

t

Dimensions (d)

HC
EAGER-GS
EAGERS

Figure 3.26: Average cost while varying number of dimensions d for avg
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Figure 3.27: Average deviation while varying grid resolution δ
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Figure 3.28: Average cost while varying grid resolution δ

to the search space resolution.

As shown in Figure 3.27, all three schemes exhibit direct correlation between δ and the

average deviation. This relation is natural because when δ is increased, the search space is highly

approximated, which essentially increases the probability of missing the exact target constraints, and

vice versa. Looking at both Figures 3.28 and 3.27 uncovers the trade-off between the deviation and

cost metrics which is controlled by δ .

Impact of Database Size

In this experiment, we have four versions of the SDSS database of sizes 100K, 1M, 4M and 8M

tuples. As expected, Figure 3.29 shows the number of probes for each scheme is constant across all

databases sizes. Clearly, this is because the search space of the refined queries remains the same for

all sizes, i.e., size of Rδ is independent of the database size. However, the database size determines

the amount of data processed in each probe and in turn, the probing time (as shown in Table 3.7). In

particular, for a machine loaded with Intel Core i7 3.40GHz CPU, 16.0 GB RAM, and Windows 7
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Figure 3.29: Average cost for SDSS database in different sizes

Dataset Size 100K 1M 4M 8M

Probe (ms) 33 419 2097 4207

Table 3.7: Time per probe (ms) for SDSS database in different sizes

OS, Table 3.7 shows the time per probe for the different databases sizes. Combining the results in

Figure 3.29 and Table 3.7 shows that EAGER-GS allows for scalable and practical query refinement.

Reducing Cost by Materialization

This experiment shows how much cost reductions EAGER-GS can achieve from materialized

candidate queries compared to EAGER-S and HC. The x-axis in Figures 3.30 and 3.31 show the

number of materialized candidate queries, starting from the top level in the hierarchical representation

and on to the bottom level. That is, the first point in the x-axis represent the number of materialized

candidate queries that belong to the top level, while the last point in the x-axis represents the number

of materialized candidate queries in all levels. Note that all compared algorithms use the same exact

materialized queries in this experiment. The y-axis shows the average cost.

Clearly, from Figures 3.30 and 3.31, EAGER-GS demonstrates better utilization of materialized

queries when compared with EAGER-S and HC. For example, when materializing only 6% of the

overall candidate queries, EAGER-GS can achieve 67% reductions in cost, while EAGER-S and HC

can only achieve linear cost reduction on the number of materialized queries. This shows how efficient

EAGER-GS is when combined with materialization. Particularly, EAGER-GS takes advantage of the

materialized queries in estimating the aggregated value of a given candidate query, which results in

tighter aggregation bounds that lead to greater pruning power.

Obviously materializing queries in advance adds additional cost to refinement. However, when

considering a scenario where more than 5 queries with constraints are submitted for refinement, the
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Figure 3.30: Average cost while varying number of materialized queries
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Figure 3.31: Average cost while varying number of materialized queries

average cost with materialization becomes less than when not materializing any queries in advance

at all. This is shown in Figure 3.32. EAGER-GS with 6% materialized queries performs better than

EAGER-GS without materialized queries, provided that more than 5 queries are submitted to the

SDSS database.

Parameter (λ ) as a Stopping Condition

The new stopping condition for EAGER-GS (i.e., λ ) controls when the algorithm should stop

searching for the optimal refined query. In the following, we investigate the behavior of this parameter

and its effect on the cost and deviation of the scheme with the default settings and α = 0.

Figure 3.34 shows that the deviation increases while increasing λ , whereas the cost decreases as

Figure 3.33 shows. That is, the larger λ is, the earlier EAGER-GS stops traversing the search space,

causing higher values of deviation. This is the classical behavior of any approximation parameter

which controls the tradeoff between cost and accuracy (i.e., deviation). For example, when λ = 0.05,

EAGER-GS finds an approximated solution with a loss of almost 86% on deviation, but 75% less cost
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Figure 3.32: Average cost while varying number of submitted queries
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Figure 3.33: Average cost while varying threshold λ

when compared to λ = 0.01.

As a guideline for setting λ , users should set higher values of λ to get prompt and approximated

results. Conversely, setting lower values to λ provides more accurate approximated result at the

expense of cost.

EAGER-GS with Cells Scoring

Instead of exploring all cells in the search space, EAGER-GS in this experiment scores the cells using

the minimum or average bounds, then it chooses only the topb cells for further exploration. To show

EAGER-GS efficiency gains when using scoring, we implemented TQGen [79] and modified it to

compare those two schemes, as explained earlier in Section 3.4.3. Note that TQGen uses a grid of

uniform cells to represent the search space, and defines a parameter called segments k to partition

a cell into kd cells. Having k = 2 is similar to how EAGER-GS represents the search space (i.e.,

pyramid structure). For this experiment, we set d = 2,α = 0.5 and δ = 1
25 .

Figures 3.35, 3.36 and 3.37 show the average deviation while varying topb for TQGen and three
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Figure 3.34: Average deviation while varying threshold λ
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Figure 3.35: Average deviation while varying topb for count

versions of EAGER-GS that score cells based on minimum, maximum and average cell deviation by

Eq. 3.4.3. Also, the figures show EAGER-GS without scoring as a benchmark for comparison.

Interestingly, when topb ≥ 4, TQGen finds the same exact optimal solution found by all the

different versions of EAGER-GS, although at much higher cost, as shown by Figures 3.38, 3.39 and

3.40. Essentially, when topb ≥ 4, TQGen will not benefit from its scoring approach since it will

select all 22 cells (generated from partitioning a cell) regardless of their scores, as long as they are not

pruned. On the other hand, EAGER-GS with its three different scoring versions, utilizes cells scores

by selecting topb cells out of (2H)2 cells in a level H, resulting in a much better approximation

when compared with TQGen. For example, if all algorithms to select only the top scored cell,

EAGER-GS (with different scoring versions) reduces cost by almost 66%, while deviating from the

optimal solution by only 7%. However, TQGen deviates almost 34% from the optimal solution, with

a cost reduction of 22%, when compared with EAGER-GS.

As Figures 3.37 and 3.40 shows, for aggregate operator avg, EAGER-GS with its different scoring

versions is able to find almost the same optimal solution, with up to 89% lower cost than EAGER-GS.
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Figure 3.36: Average deviation while varying topb for max
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Figure 3.37: Average deviation while varying topb for avg

The reason behind this large cost reduction is that only topb cells are chosen for exploration in

each iteration, which means a small number of candidate queries are probed, hence, overcoming

the limitation of the loose avg bounds without any significant reduction in deviation.

Top-K Refined Queries

So far in this work, we assume that users are looking for only one refined query that has the optimal

deviation. Nevertheless, in other cases, users are looking for K choices of refined queries which

minimize the objective at the different levels. Naturally, EAGER schemes support finding those K

choices. Hence, we conducted an experiment to see how sensitive our schemes are to K. That is, we

want to know how does K effect the performance of EAGER schemes. Using the default experiment

settings and workload, we measured the pruning power of EAGER-GS and EAGER-S while varying

K from 1 to 10.

As Figure 3.41 shows, EAGER-GS outperforms EAGER-S in pruning most of the search space

while attaining the same top K refined queries. For example, when K equals 10, EAGER-GS
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Figure 3.38: Average cost while varying topb for count
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Figure 3.39: Average cost while varying topb for max

achieves 19% better pruning power than EAGER-S. This emphasizes the benefits of the used pruning

techniques in EAGER-GS, namely: the hierarchical structure of the search space and the cardinality

based pruning. Though, for both EAGER-GS and EAGER-S, the pruning power decreases with

increasing K, because in order to find more K refined queries, both schemes need to explore more

candidate queries.

Results Discussion

As illustrated above, EAGER-GS dominates EAGER-S and HC for different parameters settings and

for different aggregate constraints. However, in case of the avg aggregate constraint, HC outperforms

EAGER-GS in terms of cost since the aggregate bounds for avg are very loose, i.e., EAGER-GS

exhibits lower pruning power under this particular aggregate constraint. EAGER-GS benefits the most

from candidate queries materialization while HC and EAGER-S only achieve linear cost reduction.

The stopping condition λ offers a tuning parameter for EAGER-GS to trade off cost for deviation.

The approximated versions of EAGER-GS provide efficient solutions to the avg aggregate constraint
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Figure 3.40: Average cost while varying topb for avg

Figure 3.41: Average pruning power with different Top-K

and also outperforms TQGen when setting topb to a small number, i.e, EAGER-GS is set to explore

only a small number of cells in each level in the grid.
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3.5 Objective-aware Range Query Refinement

Figure 3.42: ORange’s web interface

ORange (Objective-aware Range Query Refinement) is a web-based tool for range queries

refinement. Essentially, ORange refines a range query to meet a specified cardinality constraint while

taking into account the (dis)similarity between the initial query and its corresponding refined version.

To showcase SAQR’s efficiency and benefits, we designed and developed: ORange: an application

that guides police coordinators in allocating police officers into service zones, such that each police

officer has a specific capacity (number of incidents) [121, 34]. That is, each police officer can only

handle K incidents at a given time, therefore, when allocating a service zone to her, it must contain

K incidents. More or less incidents in her service zone corresponds to a drop of quality of service or

waste of resources, respectively. Accordingly, we employed the proposed SAQR schemes in Section

3.3 to refine service zones given their capacity (cardinality) constraints. We used the historical dataset

of crime incidents of the city of San Diego, CA in USA 2 to estimate the number of incidents,

therefore, this application is based on that city. Nonetheless, users can upload their own datasets

to utilize ORange capabilities.

The capabilities of ORange can be summarized as follows:

• A police coordinator can enter a cardinality constraint and visually selects an initial range query

(service zone) on a real map for a police officer.

• A police coordinator can see the new refined query provided by the application on the same

input map, such that the new query satisfies the cardinality constraint.

2Extracted from clarinova.com-crime-incidents-casnd-7ba4. San Diego Regional Data Library. 2013-08-07
http://sandiegodata.org
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Figure 3.43: ORange’s complete system architecture

• Performance details (cost and deviation) are shown for each scheme to judge and compare them

against a baseline heuristic algorithm: Hill Climbing.

In the next section, we firstly introduce the application’s architecture, then we briefly present the

application’s setup and the used dataset. As for the underlying schemes of ORange: SAQR-S and

SAQR-CS, which leverage and exploit the distance and cardinality constraints to effectively prune

the search space, we refer the reader to Section 3.3 for more detailed description of those schemes.

3.5.1 ORange Architecture

Figure 3.43 shows a detailed architecture of ORange and its building modules. ORange communicates

with the user through a web interface and receives the input as: a selected range query (service zone)

and a constraint K. The former is captured by two modules: Google Maps APIs and D3 Library, to

show a real world map and to draw a rectangular area, respectively. Then those input data are fed to

the Query Refinement Engine. When the refinement engine finds the refined query, it sends it back

to the web interface to display (with the help of Google Maps APIs and D3 Library) the new refined

service zone for the user to see. If the user is not satisfied with the result, she can issue a new query

and provide new constraints.

3.5.2 Application Setup

The ORange application is built as a client-server application with a front-end that handles all

presentation tasks and a back-end for processing data. The front-end is a web interface which consists

of an HTML page that provides the capabilities of communicating input data from users to the system

and showing output to users in a suitable way (See Figure 3.42). A visualization library called D3

Library is used to aid in drawing range queries as rectangular shapes on a real world map provided
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Attribute Description

date ISO date, in YY-MM-DD format

year Four digit year

month Month number extracted from the
date

day Day number, starting from Jan 1,
2000

dow Day of week, as a number. 0 is
Sunday

time Time, in H:MM:SS format

type Crime category, provided by
SANDAG

address Block address, street and city name

Latitude Provided by the geocoder

Longitude Provided by the geocoder

desc Long description of incident

Table 3.8: Schema of used dataset SD_incidents_100k.

by Google Maps APIs. The controlling parameters: cardinality constraint K, α and selected scheme

are collected from users through HTML input tags. While the previously mentioned presentation

tasks are all located in the front-end, all processing tasks are located in the back-end. Specifically,

the refinement engine is located in the back-end and is implemented using Java. Its job is to receive

the input parameters (query and control parameters) and return the optimal refined query and the

performance indicators to the front-end for presentation. Specifically, the front-end will show the

quality of refinement and the cost metric (via charts in a dashboard) for all schemes to users to

comapre. All data is stored in MySQL DBMS, and as explained above, we are using a historical

dataset of crime incidents of the city of San Diego, CA in USA. That dataset consists of one relation

of 100k incidents. Each incident is represented by multiple attributes, however, we are only concerned

with the longitude and latitude attributes of the crime incident. A partial schema of the relation is

shown in Table 3.8.

3.5.3 Step-by-step Example

As shown earlier, the dataset used represents the locations of historical crime incidents within the city

of San Diego. Users can allocate a service zone for a police officer, i.e., that police officer will be
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in charge of any incident reported in his service zone and he must respond to it. Provided with the

application interface in Figure 3.42, the user should perform the following four steps:

Step 1: The user will use a selection tool to select a rectangular area in the map of San Diego which

represents the desired service zone. To keep the user more informed, the NE (North east) and SW

(South west) coordinates of the selected zone are also shown on the text boxes.

Step 2: Once the zone is selected, the user then enters the cardinality constraint and selects the

controlling parameters (α and refinement scheme).

Step 3: To execute the refinement process, the user clicks on the Refine button, and waits until the

processing is finished. This is when the refinement module takes over and starts navigating the search

space looking for a refined query that has the minimum overall deviation.

Step 4: As soon as the refinement process finishes, the new returned area is drawn on the same input

map, but with different color to distinction between the initial and refined service zones. Also, the

deviation from the initial selected area is shown in the text box as a normalized value between [0-1].

3.6 Summary

In this chapter, we presented our contributions towards the Similarity-aware, Aggregate-based Query

Refinement problem in which users specify aggregate constraints for their queries. Additionally,

we proposed to include the similarity of the refined query to the input query as an objective in

refinement, aiming to increase users’ satisfaction with the refined queries. As a first step, we proposed

a declarative query model to specify all relevant parameters for refining a query in an additional

SQL-alike clause. Given a special case of Aggregate-based Query Refinement problem, we initially

focused on the cardinality constraint and presented SAQR as an efficient scheme for cardinality-based

query refinement. By utilizing similarity and cardinality based pruning techniques to minimize the

incurred costs, SAQR scheme efficiently returns a refined query that balances the tradeoff between

satisfying the imposed cardinality and similarity constraints to maximize the overall benefit to the

user.

Then, we extended the special case of the cardinality constraint by including the SQL standard

aggregate functions sum, avg, min, max as constrains for refinement, which is the general case

in the Similarity-aware, Aggregate-based Query Refinement problem. For that general case, we

presented EAGER schemes that extend on SAQR schemes to satisfy the aggregate constraints.

Additionally, EAGER schemes implement unique optimization and approximation techniques to

minimize the costs incurred in exploring the search space. These techniques include strategic

materialization of candidate queries, scoring candidate queries based on similarity and aggregate
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bounds, and controlling the stopping condition of EAGER which provides a trade-off between the

deviation and cost.

Finally, we showcased SAQR in a web-based application called ORange. ORange’s goal is to aid

police coordinators in allocating service zones to police officers given a capacity (i.e., cardinality)

constraint. To achieve this goal, ORange presents the user with a real map so that an initial service

zone can be selected for an officer. Subsequently, ORange employs SAQR schemes to produce a

refined service zone that satisfies the required cardinality and similarity constraints on the initial

selected service zone.
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CHAPTER 4

Similarity-aware Correlation-based Query

Refinement

4.1 Overview

Exploration of time series data [114, 122, 97, 135] is evident in many domains (e.g., financial, medical

and environmental domains). One of the key analysis tasks in these domains is to detect patterns

or anomalies among multiple time series [76, 72]. For instance, in the financial domain investors

intensively analyze the stocks market daily close prices to understand the patterns of the stocks market

and to make investment-related decisions based on some discovered patterns [89, 39]. Moreover, time

series data in the medical domain contain vital information. Examining and analyzing these series to

detect unusual patterns can significantly save a human life [122, 89].

In this chapter, we present our novel contribution for the Correlation-based Query Refinement

problem in the context of sequential data (i.e., time series data). In particular, we present the

Similarity-aware, Correlation-based Query Refinement problem (SCQR) which aims to efficiently

refine a user’s query to satisfy a certain targeted pattern while maximizing the similarity between the

refined query and the initial one. In this problem, a pattern is defined as the pairwise correlation of

all time series pairs (i.e., a correlation matrix M), where correlation of a pair is computed using the

well-known Pearson’s correlation coefficient [101, 36, 99, 39, 62, 1, 38]. The matrix MQ1 in Figure

1.5 is one example of a correlation matrix for three time series.

The organization of this chapter is as follows: Section 4.2 presents preliminaries and formally

defines the Similarity-aware, Correlation-based Query Refinement problem, in which users’ queries

are refined to satisfy pairwise correlation constraints. Then, Section 4.3 proposes the RELATE

scheme based on the classical tree traversal methods BFS and DFS to be as solutions for this

problem. Afterward, Section 4.3.5 discusses in detail our proposed optimization techniques for
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Symbol Description

R = {T1,T2, ...,Tn} Relation R contains n time series

m Length of time series in R

n Number of time series in R

ρ(Ti,Tj) Pairwise correlation of Ti,Tj

Mt Target correlation matrix of size n×n

Q[s,e] Range selection query on timestamp domain with
sub-interval [s,e]

QI User’s input query

MQ Correlation matrix of Q

Mt Target correlation matrix

C(Q′,Mt) Tightness of MQ′ to Mt

S(Q′,Q) Similarity of Q′ to Q

λ Similarity weight

Q∗ Optimal refined query

Table 4.1: Summary of Symbols

RELATE scheme. The proposed two-level pruning techniques enable RELATE to avoid processing

unqualified queries and to early abandon the correlation computations for some pairs of time series

using a monotonic property. Finally, Section 4.4 presents the results of extensive experiments to

show the efficiency of our proposed schemes on synthetic and real datasets, and compare them to

state-of-the-art algorithm.

4.2 Preliminaries

The task of detecting patterns and anomalies within time series data is fairly common in many

domains [114, 122, 97, 21, 130] such as the financial, medical, environmental and network domains.

Previous works have shown the importance of computing pairwise correlation to detect patterns

in time series data for various applications [70, 87, 39, 100]. For instance, computing pairwise

correlation for all time series pairs using the whole time interval [87] (or a fixed sub-interval [39, 100])

is extremely beneficial in data centre monitoring systems to discover correlated servers.

Computing pairwise correlation for all possible sub-intervals to discover patterns is a

computationally challenging problem. Works such as [70, 71] aim to find the longest correlated

subsequence (i.e., sub-interval) of two time series, while [89] aims to find the maximum sub-interval
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with the highest pairwise correlation for a given pair. It should be clear that exploration of time series

based on the whole time interval (rather than sub-intervals) is vulnerable to the classical Yule-Simpson

effect [8, 40]. At the same time, exploration of all possible time sub-intervals is a much harder

problem, since the number of sub-intervals increases quadratically with the length of time series. The

toy example we introduced in Section 1.3.2 shows the usefulness and the challenges of exploring time

series based on sub-intervals.

Accordingly, we propose the Similarity-aware, Correlation-based Query Refinement problem, in

which a user’s query is refined to satisfy user-defined pairwise correlation constraints. As we see

next, achieving the goal of this problem requires computing the pairwise correlation values of all time

series pairs for all possible time sub-intervals. The applications of this problem are fairly prevalent

in data centre management systems [73] where users analyze servers’ loads collectively to discover

patterns and anomalies based on the pairwise correlation values [87, 102]. We present the details of

this problem in the following section. All used symbols are listed in Table 4.1 with their descriptions.

4.2.1 Problem Definition

In this section we formally define the Similarity-aware, Correlation-based Query Refinement problem.

As in [74, 27], we assume the presence of n synchronized, equal length time series stored in a flat

relational table R : {T1,T2, ...,Tn} where each Ti ∈ R contains m real values {vi
1,vi

2, ...,vi
m} such that

vi
j ∈R is the jth value with time stamp j in Ti.

Users explore R by submitting SQL range queries on the timestamp attribute to select a time

sub-interval [s,e] of the time series in R, then further analyze the results based on the pairwise

correlation of all time series in R, i.e., correlation matrix M. Next, we define the basic notions of

this problem, then later give the formal problem definition.

Definition 4.1. Q is a range selection query on the timestamp attribute:

σs≤timestamp≤e(R)

such that 1≤ s≤ e≤ m.

For ease of readability, a query will be denoted as Q[s,e], or Q if the time sub-interval [s,e] is of

no importance.

As we see next, achieving the goal of the Similarity-aware, Correlation-based Query Refinement

problem implies iterating over all possible sub-intervals within [1-m]. Hence, the number of possible

refined queries is m(m−1)
2 , which increases quadratically with the length of time series m. This
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observation renders the problem at hand to be computationally hard because the correlation matrix M

will be computed for each one of these queries.

Definition 4.2. Correlation matrix M is a symmetric matrix of size n×n. Each entry M[i][ j] ∈M is

precisely the pairwise correlation of Ti and Tj.

It shall be clear from Definition 4.2 that M[i][ j] = M[ j][i],∀i = 1,2, ...,n−1;∀ j = i+1, i+2, ...,n.

Definition 4.3. The pairwise correlation of Ti and Tj of length ` is measured by the Pearson’s

correlation coefficient ρ(Ti,Tj).

ρ(Ti,Tj) =

`
`

∑
k=1

vi
kv j

k−
`

∑
k=1

vi
k

`

∑
k=1

v j
k√

`
`

∑
k=1

(vi
k)

2− (
`

∑
k=1

vi
k)

2

√
`

`

∑
k=1

(v j
k)

2− (
`

∑
k=1

v j
k)

2

(4.2.1)

Note that M[i][i] = 1,∀i = 1,2, ...,n. We are now in place to formally define the problem at hand:

Definition 4.4. Similarity-aware, Correlation-based Query Refinement Problem: Given an input

query QI and a target correlation matrix Mt . The goal is to automatically refine QI to Q∗ such that

f (Q∗) is maximized.

f (Q∗) = f (QI ,Q∗,Mt) = λS(QI ,Q∗)+ (1−λ )C(Q∗,Mt) (4.2.2)

S(QI ,Q∗) = 1− 1
1+ e−d(QI ,Q∗)

(4.2.3)

C(Q∗,Mt) = 1− (
1
z

n−1

∑
i=0

n

∑
j=i+1

(Mt [i][ j]−MQ∗ [i][ j])2) (4.2.4)

where z is a normalization factor, and:

d(QI ,Q∗) = |QI .s−Q∗.s|+ |QI .e−Q∗.e| (4.2.5)

As stated in Definition 4.4, the optimal solution Q∗ is the one with the maximum similarity S()

and the maximum closeness to the target correlation matrix C(), balanced by a user parameter λ .

Ensuring maximum similarity of Q∗ to QI is useful when users are interested for a time interval that

is close from QI’s interval. Similarly, ensuring maximum closeness to Mt is important to maximally

achieve the target.

Modeling the similarity of a query to QI (i.e., S()) as a Sigmoid function [134] on the timestamp

attribute has two advantages: it is a parameter-free function, and it expresses users interests to the

97



CHAPTER 4: SIMILARITY-AWARE CORRELATION-BASED QUERY REFINEMENT

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10
S

(Q
I,
 Q

*
)

d(QI, Q
*)

Figure 4.1: The similarity S(QI ,Q∗) decreases very quickly when distance d(QI ,Q∗) increases

input query. A query’s sub-interval that is close from the user’s input query’s sub-interval (i.e., a

small distance d()) should have more benefit than another query that is far from QI (i.e., a large

distance). Figure 4.1 shows a visual intuition of the Sigmoid function: as the distance between QI

and Q∗ increases, the similarity decreases very quickly.

As for C(), we use the Sum of Square Errors (SSE) since it indicates the tightness of Mt to a

matrix MQ of a candidate query Q. Its normalized value ranges between [0-1], where a small value

denotes a tight fit of MQ to the target Mt .

In Definition 4.4, refining QI implies modifying QI’s time interval [s,e]. We concretely define

next the possible modification operations.

4.2.2 Refining a Sub-Interval

To refine a query Q with a selection predicate on the timestamp attribute, one of these two operations

are applied on that time interval [s,e], as shown in Figure 4.2:

1. Expansion: to expand [s,e] from either sides s or e by δ . For instance, [ŝ,e] is expanded from

s side by δ such that ŝ = s− δ while [s, ê] is expanded from e side by δ such that ê = e+ δ .

We encode those two operations as LE (left expansion) and RE (right expansion).

2. Contraction: to contract [s,e] from either sides s or e by δ . For instance, [ŝ,e] is contracted

from s side by δ such that ŝ= s+δ while [s, ê] is contracted from e side by δ such that ê= e−δ .

Similarly, we encode those two operations as LC (left contraction) and RC (right contraction).

To ensure no possible candidate queries are missed, we set δ = 1. Setting δ > 1 has the effect to

reduce the number of candidate queries. While it is tempting to reduce the number of candidate
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Figure 4.2: Refining a query Q[s,e] implies refining its time sub-interval. Four candidate queries are
generated by applying LC, LE, RC and RE on QI’s sub-interval

queries (for efficiency reasons), this will introduce approximate solutions since an optimal query

might be one of those candidates that were skipped.

Achieving the goal of the problem defined in 4.4 requires recursively applying the refinement

operations LE,RE,LC,RC on QI to generated all possible sub-intervals and computing their objective

function Eq. 4.2.2. However, this exhaustive task of finding a query with a specific correlation matrix

is computationally challenging for the following reasons:

1. An algorithm has to go through all possible candidate queries (sub-intervals), which increase

quadratically with the length of time series,

2. The number of pairs in the correlation matrix increases quadratically as well with the number

of time series,

3. Computing correlation from scratch hinder the exploration process, while caching some results

to boost correlation computations is limited by the amount of available memory.

To emphasize the computational costs of a correlation matrix, we show in Figure 4.3 the CPU and I/O

time (normalized) for computing a single matrix in a traditional PC. As shown in the figure, the time

it takes to compute a correlation matrix (CPU time) exceeds the I/O time when there are thousands

of time series. For instance, when there are n ≥ 1000 time series, CPU time dominates I/O time.

[131, 7] also notes the daunting complexity of computing the pairwise correlation of all time series

pairs in another settings were the z-normalized Euclidean distance is used in place of the Pearson’s

coefficient.

Towards finding the optimal solution Q∗, we propose an efficient scheme with innovative

optimization techniques. Our propose scheme, RELATE, adopts the classical tree traversal strategies:

Breadth First (BFS) and Depth-First (DFS), which allow for innovative optimization techniques to be

incorporated in to efficiently find Q∗ without a compromise on the solution accuracy. RELATE takes
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Figure 4.3: Computational time (CPU) to compute M dominates I/O time when there is a large number
of series n≥ 1000

advantage of a monotonic propriety to avoid processing some of the candidate queries by applying

two-level pruning techniques, and to cache some of the computed results which might be helpful for

incrementally computing correlation of later queries. Details are in the following sections.

4.3 RELATE Scheme

In this section, we present an efficient scheme called RELATE as a solution for the problem defined

in Definition 4.4. In short, RELATE examines the search space by starting from the input query QI .

Then, it recursively refines it to obtain the next candidate queries, as explained earlier in Section 4.2.2.

The order in which RELATE visits the next query is determined by the traditional traversal

strategies Breadth First (BFS) and Depth First Strategies (DFS). Employing BFS and DFS enables

RELATE to incrementally compute M, i.e., incrementally computing the pairwise correlation of every

candidate query, which leads to considerable cost savings.

Further, RELATE applies two simple yet powerful pruning techniques to enable far more efficient

processing of the search space. These pruning techniques enable RELATE to avoid processing

unqualified queries and to early abandon the correlation computations of unpromising pairs in M.

As shown in Figure 4.4, RELATE starts by the input query QI then recursively applies four

refinement operations on the current query to obtain the next set of candidate queries. For each

candidate query Q, RELATE has to compute the correlation of all pairs (i.e., M) within Q’s interval.

In the following subsection, we carefully examine the costs of computing a single matrix M.
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Figure 4.4: The classical traversal strategies: Breadth First (BFS) and Depth First (DFS) to decide
the visiting order of the candidate queries in the search space starting from the input query QI

4.3.1 Cost Model Analysis

As shown in Figure 4.3 above, the computational cost of M dominates the I/O cost when there are

thousands of time series. Hence, we focus on the computational bound costs involved when searching

for Q∗. Moreover, we consider the I/O cost it takes to find Q∗.

1. Number of Operations (OP): OP is the number of operations to compute a correlation matrix

M, and it depends on the length ` and the number n of the time series in Q. Specifically, for

each pair of time series Ti,Tj of length ` in M, the five summation components in ρ(Ti,Tj) will

require exactly (`−1)+(`−1)+2(`−1)+2(`−1)+2(`−1) = 8(`−1) operations. Hence,

M requires a total of n(n−1)
2 × 8(`− 1) operations. Consequently, since there are candidate

queries as many as m(m−1)/2, finding Q∗ requires m(m−1)/2× 8n(n−1)(`−1)
2 operations.

2. Amount of Data Read (KBs): As for the I/O cost, we define KBs to be the amount of data

(in KBytes) an algorithm has to read to find Q∗. For a candidate query Q with length ` over

n = |R| time series, there are `n values to be read to compute MQ. Assuming that a single value

takes 8 bytes by default, then 8`n
1024 KBs are required to compute MQ. Thus, the total KBs with

m(m−1)/2 candidate queries is m(m−1)/2× 8`n
1024 KBs.

Note that, in practice, the number of data pages read from disk is a more common metric than

the amount of data read. With the assumed storage layout in section 4.2.1, we define B as the size

of a single page, such that B ≤ 8n
1024 . As an example, the number of pages to be read for a query Q

with length ` over n = |R| time series is almost 2` pages, where B = 4 KBs and n = 1000. In the rest

of this chapter, we assume that B = 8n
1024 for n ≥ 500, i.e., each page read from disk corresponds to

101



CHAPTER 4: SIMILARITY-AWARE CORRELATION-BASED QUERY REFINEMENT

the values of all time series for a specific time stamp. This sensible assumption simplifies the next

discussion of RELATE optimization techniques and their effect on the costs.

The mainstream approaches in computing correlation efficiently [107, 70, 71, 128, 100] utilize the

workload overlap to reduce the computational and I/O costs. It is clear from Figure 4.4 that candidate

queries exhibit natural and rich overlap among them as well. Thus, similar to these approaches,

RELATE utilizes this overlap to reduce the computational and I/O costs while searching for Q∗, as

we explain next.

4.3.2 Caching Essential Arrays
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Figure 4.5: Essential arrays of a query Q[s,e]: Caching ∑x, ∑x2 and ∑xy of Q enables RELATE to
incrementally compute the pairwise correlation of any pair in M for Q’s offspring

Based on the observation that Eq. 4.2.1 can be computed incrementally [107], we propose in

RELATE to cache the essential arrays ∑x, ∑x2 and ∑xy of a query after its correlation matrix has

been evaluated and only if it happened to have offspring. This enables RELATE to reuse computations

when computing M for Q’s offspring later on, and lead to huge costs savings as explained in the

following subsection.

The essential arrays of a query Q are added to memory by storing them into a simple data

structure (e.g., a hash table) called H, indexed by Q’s time interval. As visualized in Figure 4.5,

each component is a 1-dimensional array of size n, except ∑xy which is a 2-dimensional array of size

n× n. Alternatively, ∑xy can be represented as a 1-dimensional array of size n(n− 1)/2, where an

element ∑xy[i][ j] is mapped to this 1-dimensional array as follows: ∑xy[i∗n+ j]. An element ∑x[i]

in ∑x of Q denotes the sum of values of time series Ti that are within Q’s time sub-interval. This

convention is also followed for ∑x2[i] and ∑xy[i][ j].
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4.3.3 Reusing Essential Arrays

RELATE reuses the stored arrays in H to avoid computing the pairwise correlation from scratch for

every candidate query. Effectively, RELATE reduces the number of operations in ρ(Ti,Tj) from

8(`− 1) to a constant number of operations that is independent of the length `, for all time series

pairs, as explained next.

Assume that RELATE has evaluated Q[s,e] and stored its essential arrays in H. Further, assume

the next candidate query Q′[s− 1,e] is generated by expanding the sub-interval [s,e] by one value

from the left hand side. Hence, `′ = `+ 1, where ` and `′ are the lengths of Q and Q′, respectively.

It is clear that computing the pairwise correlation of each pair in Q requires 8(`−1) operations.

However, for any pair in Q′, its pairwise correlation can be computed incrementally from Q’s essential

arrays that are stored in H. For instance, to compute the sum of values array ∑x in Q′, only the new

values that are added to Q′ (the values with time stamp s− 1) are added to the sum of values array

∑x of Q. Recall that from Eq. 4.2.1, computing the pairwise correlation ρ(Ti,Tj) requires three

arrays: ∑x, ∑x2, and ∑xy, which all can be acquired incrementally with the same steps above. Thus,

computing the pairwise correlation of any pair in Q′ becomes independent of `′ and requires only

updating the essential arrays by one value.

Maximum Size of Required Memory (MaxMemory): With the assumption of a limited space for

caching the essential arrays, it is crucial for RELATE to minimize the size of H. Hence, RELATE

should release a query from H once it is expired, i.e., its cached arrays will not be needed anymore.

Thus, we consider the maximum size of H (MaxMemory) as a third cost metric, along with OP and

KBs defined earlier.

In the following section, we explain how RELATE minimizes H’s size by following two traditional

traversal strategies while evaluating the candidate queries. Then, we introduce our proposed

optimization techniques which further reduce the costs incurred while searching for the optimal

solution.

4.3.4 Breadth-First and Depth-First Search Strategies

As we have mentioned previously, RELATE follows the traditional BFS and DFS traversal strategies

to visit the candidate queries. These strategies enable RELATE to utilize and reuse the pairwise

correlation computations across the candidate queries, and to minimize the size of required memory

H, as we see next.

Algorithm 4.1 shows the main steps of the RELATE scheme. Users submit their input query QI ,
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Algorithm 4.1 RELATE

Input: Input query QI [s,e], similarity weight λ , target correlation Mt
Output: Q∗, fb

1: fb = −∞;Q∗ = φ ; S = φ ; H = φ ; prevParent = QI;
2: S.add(QI);
3: while ( S 6= φ ) do
4: Q = S.pop();
5: MQ = ComputeAllPairwsie(Q,H);
6: f = λP(QI ,Q)+ (1−λ )C(MQ,Mt);
7: if ( f > fb) then
8: fb = f ; Q∗ = Q;
9: C =refine(Q);

10: for all q ∈C do
11: S.push(q);
12: release(prev, prevParent,Q,H);
13: prev = Q;
14: prevParent = Q.parent;
15: return Q∗, fb;

the similarity weight λ , and the target correlation matrix Mt . The goal of RELATE is to iteratively

refine QI until its results satisfies Mt , i.e., find the optimal refined query Q∗. Once found, RELATE

outputs Q∗ with the maximum (best) objective function fb.

Initially, RELATE adds the input query QI to a data structure called S. Depending on the

traversal strategy RELATE is assigned to use, S can be either FIFO queue (BFS), or a traditional

stack (DFS). RELATE then enters a while loop until there are no more candidate queries in S. For

each candidate query Q, RELATE calls the function ComputeAllPairwise() to compute the current

query’s correlation matrix MQ (more details will shortly follow). As RELATE progresses, it keeps

track of Q∗ and the minimum f which we call fb in Algorithm 4.1 (lines 6-8). To generate the next set

of candidate queries, RELATE refines Q’s time interval (line 9) to have four refined queries, which

are pushed into S as long as they have never been visited.

As listed in Algorithm 4.2, the ComputeAllPairwise() function iterates over all pairs in MQ. For a

pair p, it searches H for an overlap po (i.e., essential arrays) based on Q’s interval. If po is not found,

then the essential arrays for p are computed from scratch by reading all values within Q’s interval for

that particular p. Otherwise, if po is found, its essential arrays are merged with the new values of p,

and the pairwise correlation of p is computed incrementally, as discussed above in Section 4.3.3. In

either cases, the algorithm updates H and adds p’s essential arrays for later pairs and queries.

Theoretical Analysis: In this subsection we analyze the convergence and the correctness of the

RELATE algorithm. The RELATE algorithm listed above returns an optimal query Q∗ with the

maximum objective value fb among all possible candidate queries that are generated recursively
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Algorithm 4.2 Compute Correlation Matrix
1: procedure COMPUTEALLPAIRWISE(Q, H)
2: for (i = 1 to n−1) do
3: for ( j = i+ 1 to n) do
4: p = (i, j); . current pair
5: po = H.findOverlap(p,Q);
6: if ( po = φ ) then
7: fully probe(Q) for current pair p
8: else
9: merge(po) with partially probed Q for p

10: MQ[i][ j] = pairwise correlation for p, Eq. 4.2.1
11: update H with p;
12: return MQ;

starting from an input query QI .

The algorithm converges when S (a FIFO queue or a stack) becomes empty. At each iteration, a

query Q is evicted from S (initially, there is only one query, the input query QI , in S). Then, candidate

queries are added to S by refining Q on the timestamp attribute, which result into a maximum of

four candidate queries C. Each query q ∈ C that has not been visited before is pushed into S. This

process is continued recursively until S becomes empty. Note that the maximum number of candidate

queries which the algorithm will visit for any given input query is m(m−1)
2 , where m is the length of

the time series in the dataset. This proves the convergence of the RELATE algorithm. Next, we prove

the correctness and completeness of RELATE.

As discussed above, for any input QI and Mt , RELATE returns the optimal refined query Q∗

with the maximum objective value fb among all possible candidate queries. In the algorithm, Q∗

is initialized to empty and fb = −∞. As RELATE iterates over all possible queries using the four

refinement operations, Q∗ and fb are updated once a query is found to have a maximum f than fb.

Once the algorithm converges (i.e., terminates), Q∗ and fb will hold the optimal refined query with

the maximum objective value among all possible candidate queries. As noted before, setting δ = 1

ensures no possible candidate queries are missed.

Management of Cached Arrays

To minimize the size of H, RELATE removes cached arrays for a query once it has no benefit in

the future. This depends on the traversal strategy that RELATE uses. We firstly discuss the case

with BFS, then later we discuss how RELATE manages the cached arrays when it is using the DFS

strategy. The pseudocode for both cases is listed in Algorithm 4.3.

Looking back at Figure 4.4, query Q2’s essential arrays will no longer be needed once RELATE
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moves to evaluate query Q3’s offspring at level two (after evaluating Q2’ offspring, per the BFS

strategy). To know which query is no longer needed, RELATE keeps track of the previous parent

while evaluating candidate queries. Once it finishes evaluating a candidate, it invokes the release()

function which in turn checks if the current candidate’s parent is different to the previous one. If this

is the case, then RELATE removes the previous parent’s essential arrays (e.g., query Q2 in this case)

since it is no longer needed.

With the DFS strategy, a query’s essential arrays are needed as long as its offspring has not been

fully evaluated. The reason is, RELATE requires the parent query of a given query to incrementally

compute its correlation matrix. If RELATE releases this parent query’s essential arrays before

evaluating all of its offspring, then the unevaluated queries of its offspring will have to be computed

from scratch.

Similar to the BFS strategy, RELATE invokes the release() function once it finishes evaluating a

candidate query. Under the DFS strategy, RELATE keeps adding the essential arrays as long as the

current query’s level is more than the previous one. As shown in Algorithm 4.3, once RELATE visits

a query that is at a higher level, it recursively removes the essential arrays of all the queries starting

from the previous query up to the parent of the current one. This is because when RELATE visits a

query that is at a higher level than the previous one, it means that the previous query either has no

offspring, or all queries that belong to the previous query’s offspring have been evaluated. Hence, its

essential arrays are no longer needed.

Effectively, RELATE reduces the costs metrics defined above by utilizing one of the two traversal

strategies BFS and DFS in search for Q∗, and continuously releasing cached arrays once they become

expired. Next, we further optimize RELATE by proposing two efficient and effective pruning

techniques that provide further reductions of costs.

Algorithm 4.3 Release from Cache H
1: procedure RELEASE(prev, prevParent, Q, H)
2: switch Strategy do
3: case BFS
4: currParent = Q.Parent;
5: if ( prevParent 6= currParent ) then
6: remove prevParent’s essential arrays from H
7: case DFS
8: currLevel = Q.level; prevLevel = prev.level;
9: if ( (currLevel− prevLevel) < 0) then

10: recursively remove all essential arrays from H for queries starting from prev up to
Q.Parent
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4.3.5 Two-level Pruning Techniques

We extend RELATE scheme to utilize a monotonically decreasing property at two levels: similarity

level, and pairwise correlation level. The former enables efficient pruning of the search space (i.e.,

pruning unpromising candidate queries), which addresses the quadratic number of candidate queries
m(m−1)

2 , while the latter addresses the quadratic number of pairs in a correlation matrix instance n(n−1)
2

by abandoning the computation of correlation for pairs as early as possible.

In the following subsections, we explain how these two techniques work, and discuss their mixed

impact on the costs metrics we defined earlier in Section 4.3.1.

4.3.6 Similarity-aware Pruning Technique

RELATE applies a simple yet powerful pruning technique to avoid visiting unpromising queries. This

result into a considerable computational and I/O costs savings.

Recall that the similarity function S() in Eq. 4.2.2 computes a query’s similarity to the initial time

sub-interval defined in QI . This technique makes use of the monotonic property of the similarity

function S() to prune unpromising candidate queries that are far from QI .

Lemma 2. S() is a monotonically decreasing function.

Proof. It is easy to see from Figure 4.4 that all candidate queries at level l have the same S() since

they are at the same distance from the root, i.e. d(QI ,Qi). Also, it is clear that candidate queries at

level l + 1 are at one extra step from the queries in the previous level, hence, their S() is lower. This

pattern continues through out the whole tree. Hence, S() is a monotonically decreasing function in

terms of levels. �

With Lemma 2, RELATE is able to early terminate the search and abandon all candidate queries

that are yet to be explored once the current query’s estimated f () (i.e., fe) is worse than the best

solution found so far fb. Specifically, if the current query’s estimated objective fe = λS() + (1−

λ )×1 is lower than fb, then this query, its offspring, the remaining queries in the queue, and all other

unvisited queries will definitely have lower f than fb and can no longer increase fb further, thus they

can be abandoned.

The impact of this technique on the costs is evident. Essentially, pruning candidate queries reduces

the number of possible queries that RELATE has to visit, i.e., m(m−1)
2 . As a result, the costs OP, KBs

and MaxMemory are also reduced. However, we note that this reduction is controlled by the weight

λ assigned to S(). Setting λ = 0 means this technique can no longer prune candidate queries, since

fe = λS()+ (1−λ )×1 will always be higher than fb.
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4.3.7 Pairwise Correlation Pruning Technique

As mentioned above, setting the weight λ to zero prevents RELATE from pruning queries using the

Similarity-aware Pruning Technique. Hence, we propose for RELATE to utilize a monotonically

decreasing property of the correlation function C() in Eq. 4.2.2 to early abandon the correlation

computations of some pairs in M.

Lemma 3. C() is a monotonically decreasing function.

Proof. Recall that C(Mt ,MQ) is the normalized sum square of all absolute differences of pairwise

correlation values between a target matrix Mt and a given one MQ. By assuming MQ to be an exact

replica of Mt (which returns the maximum value of C(Mt ,MQ)), and iterating over all pairs in MQ

and inserting their real values, C(Mt ,MQ) will gradually decrease. Specifically, assume the first half

of pairs in MQ have been probed (from MQ[0][1] to MQ[
n−1

2 ][n]), and the current value of C(Mt ,MQ)

equals to C1:

C1 = 1− (
1
z

n−1
2

∑
i=0

n

∑
j=i+1

(Mt [i][ j]−MQ∗ [i][ j])2)

The current value C1 holds the differences of the first n1 = 2n(n−1)
2 pairs between MQ and Mt , the

remaining pairs will have zero difference by definition. The algorithm will continue probing the pairs

n1 + 1 to n(n−1)
2 to fully evaluate C(Mt ,MQ). For instant, the value of the pair n1 + 1 is computed as

the squared difference between MQ[
n−1

2 + 1][n−1
2 + 2] and Mt [

n−1
2 + 1][n−1

2 + 2] then it will replace

the default value of zero in C(Mt ,MQ). Let C2 be the differences of the first n1 pairs plus this new

pair:

C2 = 1−(1
z

n−1
2

∑
i=0

n

∑
j=i+1

(Mt [i][ j]−MQ∗ [i][ j])2+(MQ[
n−1

2
+1][

n−1
2

+2]−Mt [
n−1

2
+1][

n−1
2

+2])2)

Clearly, C2 ≤C1. Hence, C(Mt ,MQ) is a monotonically decreasing function. �

For a candidate instance Q, RELATE assumes that MQ is an exact replica of Mt , then whenever the

algorithm inserts a real correlation value for a pair in MQ, it simultaneously checks if fe = λP()+(1−

λ )C(Mt ,MQ) is lower than fb. If so, the rest of the unevaluated pairs are skipped and the algorithm

moves on to the next candidate query. For instance, assume that there are n×n pairs in MQ for a query

Q. According to Eq. 4.2.4, the value of C(Mt ,MQ) = 1 since MQ is initially a replica of Mt . When

evaluating the first pair, i.e., MQ[0][1], its real value difference from Mt [0][1] is equal to or greater

than the assumed value, hence, the amount C(Mt ,MQ) will decrease as long as MQ is populated with

the real value of the n×n pairs.
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Figure 4.6: Ordering of pairs in a correlation matrix for a given candidate query. REF-DY is faster to
arrive to fb than SYS and REF, hence, enabling RELATE to reduce the computational cost

Due to the assumed storage layout, this technique is limited in minimizing the I/O cost, i.e.,

amount of data read (KBs). As mentioned above in Section 4.3.1, a single page of size B contains

values of all time series for a specific time stamp. Hence, for a given correlation matrix MQ, even if

RELATE skips some pairs in MQ and does not evaluate them, it has already read the values for all

time series for a specific time stamp. As for the computational cost (OP) and the maximum memory

required to cache the essential arrays (MaxMemory), this technique enables RELATE to minimize

both costs since pruning a single pair corresponds to avoiding computing its pairwise correlation and

storing its essential arrays in H.

The order which RELATE follows in examining the pairs in MQ is crucial. Ideally, RELATE

should follow an ordering that enables more pruning of pairs in MQ to minimize the incurred costs.

4.3.8 Paris Ordering

As noted above, the order in which RELATE follows while evaluating the pairs in MQ has an effect on

the incurred costs. Specifically, RELATE should give a priority to evaluate a pair over another based

on which one will bring the estimated fe closer to the threshold fb. The reason is, when RELATE

evaluates the pairs in MQ for a given candidate query, it can early terminate the computations of

correlation for the pairs in MQ once the estimated fe becomes less than fb.

We start by the default ordering of pairs, then propose two different orderings which enable

RELATE to reduce the computational cost.
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Systematic Ordering

The default ordering of pairs in RELATE is a systematic ordering (SYS). As its name suggests, SYS

ordering is as follows:

MQ[i][ j]|i = 1,2, ...,n−1; j = i+ 1, i+ 2, ...,n; i < j

Hence, RELATE examines the pairs for all candidate queries in the same exact order, and stops once

fe becomes less than fb or all pairs in MQ have been examined.

Greedy Ordering

Another more intuitive ordering is to rearrange the pairs in MQ in an ascending order based on their

scores. Informally, the score of a pair MQ[i][ j] is its distance d to the corresponding pair in Mt .

Formally:

score(MQ[i][ j]) = d(MQ[i][ j],Mt [i][ j]) = |MQ[i][ j]−Mt [i][ j]|

Accordingly, the first pair to be examined under this greedy ordering is the one with the maximum

score. The intuition behind this ordering is to increase the chances of hitting the threshold fb to early

abandon the computations of correlation of the remaining pairs in MQ.

Assume that MQ has only two pairs MQ[i][ j] and MQ[i′][ j′] with scores c′ and c′′, respectively,

where c′′ > c′. Further, assume fe = fb + c (before evaluating either of the pairs) such that fb and

fe are in the range (0-1) and c′′ > c > c′. Clearly, evaluating the second pair MQ[i′][ j′] will lead to

pruning the evaluation of the first pair, since fe will be less than fb. Conversely, evaluating the pair

MQ[i][ j] will not lead to pruning the evaluation of the second pair.

Since the values of the pairs in MQ are not known until they are examined and evaluated, it

becomes very difficult to acquire the scores without evaluating the pairs in the first place. Hence,

RELATE reuses the computations and utilizes the history of the computed correlation values to

estimate the scores of the pairs. Given a candidate query Q, RELATE exploits a reference matrix

Mr that approximates the pairs’ values in MQ, and computes the distance d from that reference.

There are two types of a reference matrix Mr which RELATE can utilize for any given query Q:

• Static reference matrix (REF).

• Dynamic reference matrix (REF-DY).

In the static case, Mr is an exact copy of the input query’s correlation matrix MQI . This matrix is

firstly computed by RELATE at the beginning of the algorithm. Consequently, RELATE computes the
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order only once (after computing MQI ), then reuses this ordering for all remaining candidate queries.

In the dynamic case, Mr is an exact copy of the current query’s parent matrix. Hence, RELATE

re-computes the order every time the parent of a current query changes, which entails further cost

overhead when compared to REF and SYS.

As illustrated in Figure 4.6, the two versions of greedy ordering (REF and REF-DY) enable

REALTE to to early abandon the calculations of unnecessary pairs for a given query. For the case of

static reference matrix, the pairs in MQI that have the highest difference to the target matrix Mt are

evaluated first, resulting in hitting the threshold (i.e., best solution found so far fb) very early when

compared to the systematic ordering.

4.4 Experiments

We have performed extensive experiments to evaluate the performance of our proposed algorithms.

Before discussing the results, we first explain the experimental setup.

4.4.1 Setup

We experimented with the variants of RELATE scheme, as outlined in Table 4.2. Each traversal

strategy is tested with the two pruning techniques proposed in Section 4.3.5. We also compare

our algorithms with ZES [71], state-of-the-art algorithm proposed to discover the time sub-interval

of a correlated pair with correlation above a threshold. Note that we extended ZES to cater for

multi-variant analysis, i.e., a correlation matrix M for more than two time series. All algorithms have

the cache management capability, as indicated in Table 4.2. The algorithms were implemented using

Java SDK and run on a Windows machine with 16 GB RAM and Intel i7 CPU 3.0 GHz.

Datasets: In our experiments, we used two datasets: synthetic and a real dataset. The synthetic

dataset was generated according to a Random Walk model, while the real dataset was extracted from

Google Cluster Usage Data [103]. To generate a time series using the Random Walk model [39], a

seed is set to a normally generated random number. Then, each subsequent number is the sum of its

predecessor and a normally distributed number. There are a total of n = 1000 time series, and their

maximum length is m = 1000.

Workload: a workload consists of a set of runs. Each run is a trio: input query, target correlation

matrix and a user preference (QI , Mt , λ ). A query’s time interval [s,e] length is either: short, medium

or long. The interval is also either on the left hand side, right hand side, or in the middle of the

original time series interval. QI is generated at random from these 23 + 1 classifications. Mt is
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Algorithm INC SMP PWC Caching

State-of-the-art (ZES) X X X X

RELATE-BFS-SMP X X X X

RELATE-BFS-PWC X X X X

RELATE-BFS-SMP-PWC X X X X

RELATE-DFS-SMP X X X X

RELATE-DFS-PWC X X X X

RELATE-DFS-SMP-PWC X X X X

Table 4.2: Variants of RELATE: INC: incremental computation of correlation. SMP: Similarity-aware
pruning. PWC: Pairwise correlation pruning

arbitrarily chosen from a query that is generated from the above classifications to guarantee an exact

solution existence. Hence, the size of the workload is (23 + 1)2.

4.4.2 Results

We test the scalability of our proposed algorithms in terms of number and length of time series (n and

m), and their sensitivity to the similarity weight λ . Moreover, we test the ordering methods SYS, REF

and REF-DY of RELATE-PWC and their effects on the costs metrics. We report the cost components

defined in Sections 4.3.1 and 4.3.3, and vary the parameters n, m and λ in the experiments.

We also use an additional parameter ml to specify the acceptable minimum length of any candidate

query. Any candidate query with a length less than ml% of m is pruned.

We can ensure a reasonable running time for the experiments using ml and the default values of

n and m. In particular, the parameter ml implicitly controls the number of candidate queries that are

examined by our algorithms. The parameters n and m are dependent on the dataset itself, and we

experiment with different scales of datasets.

Scalability Results

We evaluate the scalability of our algorithms in terms of time series length m and number of time

series n using different parameters settings.

First, using the synthetic dataset, we vary m in the range [100 – 1000] while setting n = 50,λ =

0.005 and ml = 0.5. Figures 4.7 and 4.8 report the number of operations (OP) for the two strategies

BFS and DFS. As the figures show, the two variations of RELATE scheme (BFS-SMP-PWC and

DFS-SMP-PWC) reduce the amount of required operations OP by almost 40% when compared
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Figure 4.7: Average OP while varying time series length
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Figure 4.8: Average OP while varying time series length

to state-of-the-art algorithm ZES. This reduction is achieved by RELATE’s pruning techniques.

Specifically, both variations of RELATE scheme employe the pairwise correlation pruning technique

which enable them to early abandon the pairwise correlation computations of some pairs of time

series. Moreover, as Figure 4.7 shows, BFS-SMP is able to prune a small number of candidate

queries by utilizing the similarity-aware pruning technique. However, the impact of this technique is

limited because in this experiment λ is set to a small value while ml is set to a high value. That is, the

former’s pruning power decreases when it is set to a small value, while the latter’s high value reduces

the number of candidate queries which means less candidate queries to be pruned.

As for the amount of required memory to cache the essential arrays, we can see from Figures

4.9 and 4.10 that the DFS strategy is extremely poor in minimizing the amount of required memory,

when compared to BFS and ZES. In contrast to BFS and ZES, DFS proceeds to evaluate Q’s offsprings
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Figure 4.9: Average MaxMemory while varying time series length
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Figure 4.10: Average MaxMemory while varying time series length

before fully evaluating all Q parent’s offspring. Hence, DFS needs to keep the essential arrays of Q

and Q’s parent in memory. As explained in Section 4.3.4, DFS needs both Q and Q’s parent essential

arrays to incrementally compute the pairwise correlation. The insertion of the essential arrays in H

by DFS continues as long as there are offsprings, i.e., the level of the current query is more than the

previous query. Thus, under the DFS strategy, H will have essential arrays for m(m−1)/2 candidate

queries in the worst case.

However, the two algorithms BFS-SMP-PWC and ZES only proceed to evaluate Q’s offspring

after fully evaluating all Q parent’s offspring. This enable both algorithms to reduce the amount

of required memory by nearly 10 factors, as shown in Figures 4.9 and 4.10. Figure 4.9 shows that

the pairwise correlation pruning technique can effectively reduce the amount of required memory by

39%, while the similarity-aware pruning technique’s impact on MaxMemory is negligible since λ is
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Figure 4.12: Average KBs while varying time series length

set to a small value.

Figures 4.11 and 4.12 illustrate the average I/O cost for RELATE scheme variations against ZES.

By comparison to ZES, BFS-SMP-PWC and DFS-SMP-PWC are able to reduce the amount of I/O by

up to 39%, mainly because of the pairwise correlation pruning technique. Again, the similarity-aware

pruning technique shows a negligible impact since λ is set to a small value.

Second, we show in this experiment the results for the real dataset: Google Cluster Usage Data,

while varying the number of time series n in the range [10 – 100] and setting m= 200,λ = 0.005,ml =

0.1. Because BFS dominates DFS in the costs metrics, we only compare the BFS strategy to ZES in

the remaining experiments.

As Figures 4.13, 4.14 and 4.15 show, all three cost metrics (computational cost, maximum

memory required and amount of data read) increase as the number of time series increases. This
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Figure 4.14: Average MaxMemory while varying number of time series

is because the number of pairs in a correlation matrix increases quadratically with the number of

time series, as mentioned previously. Despite that, our proposed algorithm BFS-SMP-PWC is able

to reduce the costs increase by 40%-50%, when compared to ZES. For instance, Figure 4.13 shows

that the similarity-aware and pairwise correlation pruning techniques reduce the computational cost

by 40% and 35%, respectively. Similarly, Figure 4.15 shows that the similarity-aware and pairwise

correlation pruning techniques collectively reduce the amount of required memory by 41%.

Sensitivity to λ Results

In this experiment, we measure the sensitivity of λ on the costs metrics while setting n = 20,m = 200

and ml = 0.1 using the Google Cluster Usage Data. We compare the results of the BFS’s variants to

show the pruning techniques impact on the costs metrics for different settings of λ .
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Figure 4.16: Average OP while varying similarity weight λ

Figures 4.16 and 4.17 show an interesting relationship between the similarity weight λ and the

cost metrics. As mentioned previously, S() is a monotonically decreasing function, i.e., it decreases

as the algorithm moves away from the root (QI). The algorithm BFS-SMP-PWC utilizes this property

to prune unqualified queries. This is apparent in both figures, as more weight is assigned to S(), i.e.,

increasing λ , BFS-SMP-PWC prunes more unqualified queries, resulting into reducing the number

of operations and the amount of memory required to cache essential arrays. However, the BFS-PWC

variant becomes less efficient in its pairwise correlation pruning technique, since the threshold fb

becomes more loose due to the less weight C() gets as S()’s weight increases. The BFS-SMP-PWC

variant which combines the two techniques achieves the maximum costs reduction, when compared

to the other two variants BFS-SMP and BFS-PWC.

Figure 4.18 shows the amount of read data while increasing λ for the three variants BFS-PWC,
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Figure 4.17: Average MaxMemory while varying similarity weight λ
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BFS-SMP and BFS-SMP-PWC. Clearly, the BFS-SMP-PWC variant achieves the maximum cost

reduction as well, since it combines both pruning techniques.

Ordering of Pairs Results

As mentioned in Section 4.3.7, the order which RELATE follows in examining the pairs in M can

have an effect on the overall performance. Using the Google Cluster Usage Dataset, we examine in

this experiment how ordering of pairs can effect the cost metrics of our algorithms while varying n in

the range [5 – 30] and setting m = 200,λ = 0,ml = 0.1. We report the results of the three different

approaches of ordering: systematic (SYS), greedy (REF) and dynamic greedy (REF-DY), under the

BFS strategy.

Figures 4.19 and 4.20 show the computational cost and number of probed pairs for the three
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Figure 4.20: Number of probed pairs across different ordering methods

aforementioned approaches of ordering. Recall that REF-DY reorders the pairs when the current

candidate query’s parent changes, while REF performs this ordering once at the beginning based on

the input query.

From the figures, the computational cost and the number of examined pairs can be further reduced

by almost 40% and 52%, respectively, if RELATE uses the REF-DY method to order the pairs instead

of the default ordering SYS. While this seems very promising, recomputing the distances when the

parent of a candidate query changes entails further computational cost, as shown in Table 4.3. REF

ordering provides a relatively competitive reduction of 22% and 30% for the computational cost and

number of probed pairs, respectively, when compared to SYS. However, in contrast to REF-DY, REF

incurs zero additional cost.

The average I/O cost for these approaches are relatively similar, as shown in Figure 4.21.

Reducing the number of probed pairs implicitly means reducing the I/O cost as well, which is evident

when looking at the two Figures 4.21 and 4.20.
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Figure 4.21: Amount of read data across different ordering methods

Number of series 5 10 15 20 25 30

Operations (#) 33788 153264 370228 680697 1131465 1671644

Table 4.3: Additional computational costs of REF-DY

Results Discussion

Compared to state-of-the-art, RELATE shows significant reduction in costs across all performance

measurements while varying m (length of time series) and n (number of time series). The is due

to the similarity-aware and pairwise correlation pruning techniques which enable RELATE to reuse

computations and early terminate the search when possible. However, the DFS version of RELATE

algorithm shows poor performance in terms of MaxMemory because of the traversal strategy that

DFS implements. Overall, the BFS-SMP-PWC variant of RELATE outperforms the other variants

across all performance measurements. All variants of RELATE are sensitive to the similarity weight

λ . Increasing λ result in pruning more queries because of the similarity-aware pruning technique.

However, as the similarity-aware pruning technique weight is increased, the pairwise correlation

pruning technique becomes less efficient, hence, the BFS-PWC variant shows poor performance

with increasing λ . Computational costs of RELATE are also sensitive to the ordering of pairs. A

greedy ordering (REF) provides relatively competitive reductions in costs when compared to the other

ordering methods.

4.5 Summary

Automatically refining a query to satisfy certain pairwise correlation constraints assists users in

exploring time series data for various applications such as network and environment monitoring.

However, finding a refined query that optimally satisfies pairwise correlation constraints entails
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massive computational and I/O costs, since the number of possible candidate queries increases

quadratically with the length of time series. Moreover, the number of time series pairs increases

quadratically as well with the number of time series, making it impractical for brute-force algorithms.

Therefore, in this chapter we proposed an efficient scheme called RELATE which aims to refine a

user’s query to satisfy the pairwise correlation constraints for all time series pairs, while maximizing

the similarity between the refined query and the initial one. Specifically, RELATE iteratively refines

an input query’s sub-interval and compute the pairwise correlation of all pairs of time series for each

candidate query. At a high level, RELATE builds on the observation that pairwise correlation can

be computed incrementally to save computational and I/O costs. To achieve that, RELATE employs

two traditional traversal strategies: BFS and DFS, to order the evaluation of the candidate queries.

These two strategies enable RELATE to control the incurred costs by utilizing the computed pairwise

correlation of previous queries in an efficient way.

Beyond the incremental computation of pairwise correlation, we proposed two pruning techniques

that are based on a decreasing monotonic property to address the computational and I/O costs. The

first technique enables RELATE to prune unpromising candidate queries based on their similarity

to the input query, while the second technique enables RELATE to early abandon the calculation

of pairwise correlation for some time series pairs. Then, we evaluated our RELATE scheme under

different experimental settings and compared its performance against state-of-the-art algorithm using

both real and synthetic datasets.
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Conclusions

The aim of this thesis is to develop efficient query refinement techniques to guide users in refining

their queries when exploring relational and sequential data. In Section 5.1 we reflect on the novel

contributions in this thesis, and provide directions for future work in Section 5.2.

5.1 Summary of Contributions

In Chapter 3, we addressed the problem of refining a query given aggregate and similarity constraints.

Initially, in Section 3.2 we presented preliminaries and the formal definition for the Similarity-aware,

Aggregate-based Query Refinement problem. We also defined our query model and provided a

declarative model to enable users to specify all relevant parameters for refining their queries in an

extended SQL structure.

In Section 3.3, we focused on a special case of an aggregate constraint: cardinality constraint,

for which we proposed a novel scheme called SAQR. SAQR balances the tradeoff between satisfying

the cardinality and similarity constraints imposed on the refined query so that to maximize its overall

benefit to the user. To achieve that goal, SAQR implements efficient strategies to minimize the costs

incurred in exploring the available search space. In particular, SAQR utilizes both similarity- and

cardinality-based pruning techniques to bound the search space and quickly find a refined query that

meets the user expectations. Moreover, SAQR employs a hierarchical representation of the search

space, which provides better estimates of the cardinality constraint bounds.

Then, in Section 3.4, we extended the cardinality constraint to include SQL’s standard

aggregate operators sum, avg, min, max as constraints for refinements, which is the case in the

Similarity-aware, Aggregate-based Query Refinement problem. We proposed an efficient scheme

for refinement of aggregate constraints, which extends on SAQR techniques to satisfy the aggregate

and similarity constraints. Specifically, EAGER implements efficient strategies to minimize the
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costs incurred in exploring the search space by utilizing similarity and the monotonicity property

to bound the search space and quickly find a refined query that meets users expectations. Further, we

proposed optimization and approximation techniques for EAGER scheme which offer a controllable

tradeoff between the cost and accuracy of the refined queries. These techniques include strategic

materialization of candidate queries and scoring candidate queries based on similarity and aggregate

bounds.

In Section 3.5, we presented a web-based application (ORange) which employs the novel SAQR

schemes to refine a query given cardinality and similarity constraint. The aim of ORange is to guide

police coordinators in allocating service zones to police officers by refining an initial range query to

satisfy a specific cardinality constraint. Initially, ORange presents users with a real map and allows

them to select a service zone and also to enter a capacity (cardinality) constraint with other controlling

parameters. After refining the selected zone, ORange shows the refined zone on the map and the

performance results of each scheme to provide post-run evaluation of the system’s capabilities.

Lastly, in Chapter 4 we addressed the problem of Similarity-aware, Correlation-based Query

Refinement. This computationally hard problem has many applications in areas such as network

and environment monitoring. We explained that brute force algorithms are not practical to solve such

a problem since the number of possible sub-intervals (i.e., candidate refined queries) and the number

of time series pairs grow quadratically with the length and number of time series. Exhaustively

examining these candidate queries and time series pairs entails massive computational and I/O costs.

Therefore, we proposed an efficient scheme called RELATE which aims to refine a user’s query to

satisfy pairwise correlation constraints while maximizing the similarity of the refined query to the

initial one. To minimize the incurred costs, RELATE employs two traditional traversal strategies:

BFS and DFS, to order the evaluation of the candidate queries. These two strategies enable RELATE

to control the incurred costs by incrementally computing the pairwise correlation of the candidate

queries.

Beyond the incremental computation of pairwise correlation, we proposed two pruning techniques

that are based on a decreasing monotonic property to address the computational and I/O costs. The

first technique enables RELATE to prune unpromising candidate queries based on their similarity

to the input query, while the second technique enables RELATE to early abandon the calculation of

pairwise correlation for some time series pairs.
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5.2 Future Work

In this section we briefly discuss future work directions that are related to the research problems

addressed within this thesis.

5.2.1 Query Refinement for Aggregate Constraints

We identified two leading directions to extend the aggregate-based query refinement problem. At the

problem definition level, a query in Chapter 3 is represented by its range predicates which resembles a

d-dimensional rectangle, such as the 2-dimensional service zone in the ORange demo in Section 3.5.

Further, an aggregate constraint is applied on the result of a single aggregate operator over a single

attribute. The above assumptions can be extended by considering complex queries and complex

aggregate constraints.

For instance, spatial queries in the 2-dimensional space can be used in ORange to select a service

zone that is not rectangular, e.g., a circular shape. Supporting such complex spatial queries introduces

unique challenges and requires revisiting the defined refinement model comprehensively, starting

from the predicates’ forms, measuring the refined queries similarities, the refinement operations (i.e.,

predicates expansion and contraction), the enumeration of refined queries, the aggregates bounds (i.e.,

finding the dominating, and dominated by queries) and the hierarchical representation of the search

space.

While a refinement constraint in Chapter 3 is assumed to be singular, i.e., consists of a single

aggregate operator over a single attribute, it can be extended to support complex aggregate constraints.

A complex aggregate constraint can be defined as the result of joining two singular aggregate

constraints using a binary operation, e.g., a ratio, where the first constraint is divided by the second

constraint. Such constraints require further investigation to estimate suitable bounds to enable

bounds-based pruning techniques.

5.2.2 Query Refinement for Correlation Constraints

The addressed problem in Chapter 4 draws its hardness from the quadratic number of possible

sub-intervals, and the quadratic number of pairs that need to be evaluated. The former depends on the

length of the time series, while the latter depends on the number of time series.

Approximation techniques can be used to address this computationally hard problem. Although

such techniques introduce inaccuracy, they provide a suitable trade off between query-time and

accuracy which is favored in some data exploration applications.
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As briefly noted in Section 4.2.2, one possible technique to control the quadratic number of

possible sub-intervals is to set the step size δ to a larger value. Moreover, the time series data can

be approximated offline to control the quadratic number of pairs. This can be done in two steps.

First, using the classical moving average technique, the time series data are smoothed based on a

defined interval. Then, in the second step, time series are grouped based on a similarity threshold.

Each group is represented by an artificial time series that represents all the real time series within that

group. However, this requires formally defining how pairwise correlation constraints are assigned

to these approximated time series. For instance, two pairwise correlation constraints in M might

correspond to a single approximated pair. Thus, such approximation techniques should address these

inconsistent constraints in the approximated space.
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