176 research outputs found

    Sex-Specific Differences in Shoaling Affect Parasite Transmission in Guppies

    Get PDF
    Background: Individuals have to trade-off the costs and benefits of group membership during shoaling behaviour. Shoaling can increase the risk of parasite transmission, but this cost has rarely been quantified experimentally. Guppies (Poecilia reticulata) are a model system for behavioural studies, and they are commonly infected by gyrodactylid parasites, notorious fish pathogens that are directly transmitted between guppy hosts. Methodology/Principal Findings:Parasite transmission in single sex shoals of male and female guppies were observed using an experimental infection of Gyrodactylus turnbulli. Parasite transmission was affected by sex-specific differences in host behaviour, and significantly more parasites were transmitted when fish had more frequent and more prolonged contact with each other. Females shoaled significantly more than males and had a four times higher risk to contract an infection. Conclusions/Significance: Intersexual differences in host behaviours such as shoaling are driven by differences in natural and sexual selection experienced by both sexes. Here we show that the potential benefits of an increased shoaling tendency are traded off against increased risks of contracting an infectious parasite in a group-living species

    Do female association preferences predict the likelihood of reproduction?

    Get PDF
    Sexual selection acting on male traits through female mate choice is commonly inferred from female association preferences in dichotomous mate choice experiments. However, there are surprisingly few empirical demonstrations that such association preferences predict the likelihood of females reproducing with a particular male. This information is essential to confirm association preferences as good predictors of mate choice. We used green swordtails (<i>Xiphophorus helleri</i>) to test whether association preferences predict the likelihood of a female reproducing with a male. Females were tested for a preference for long- or short-sworded males in a standard dichotomous choice experiment and then allowed free access to either their preferred or non-preferred male. If females subsequently failed to produce fry, they were provided a second unfamiliar male with similar sword length to the first male. Females were more likely to reproduce with preferred than non-preferred males, but for those that reproduced, neither the status (preferred/non-preferred) nor the sword length (long/short) of the male had an effect on brood size or relative investment in growth by the female. There was no overall preference based on sword length in this study, but male sword length did affect likelihood of reproduction, with females more likely to reproduce with long- than short-sworded males (independent of preference for such males in earlier choice tests). These results suggest that female association preferences are good indicators of female mate choice but that ornament characteristics of the male are also important

    Female preference for blue in Japan blue guppies (Poecilia reticulata)

    Get PDF
    Guppies (Poecilia reticulata) are widely used as a model species in mate choice studies. Although native to South America, guppies have been introduced to natural water bodies in disparate regions of the globe. Here, for the first time, we examine guppies from one such introduced population in Japan where males have evolved a predominantly blue color pattern. Previous studies of wild-type guppies have shown blue to play a relatively minor role in the mate choice decisions of females compared to other traits, such as orange, and the importance of blue is not universally supported by all studies. The Japanese population therefore presents an ideal opportunity to re-examine the potential significance of blue as a mate choice cue in guppies. Mate choice experiments, in which female Japan blue guppies were given a choice between pairs of males that differed in their area of blue coloration but were matched for other traits, revealed that females prefer males with proportionately larger amounts of blue in their color patterns. We discuss possible factors, including sexual and ecological selection, which may have led to the evolution of unusually large areas of blue at the expense of other colors in Japan blue guppies. However, further studies are needed to distinguish between these scenarios.Web of Scienc

    Both Geography and Ecology Contribute to Mating Isolation in Guppies

    Get PDF
    Local adaptation to different environments can promote mating isolation – either as an incidental by-product of trait divergence, or as a result of selection to avoid maladaptive mating. Numerous recent empirical examples point to the common influence of divergent natural selection on speciation based largely on evidence of strong pre-mating isolation between populations from different habitat types. Accumulating evidence for natural selection's influence on speciation is therefore no longer a challenge. The difficulty, rather, is in determining the mechanisms involved in the progress of adaptive divergence to speciation once barriers to gene flow are already present. Here, we present results of both laboratory and field experiments with Trinidadian guppies (Poecilia reticulata) from different environments, who do not show complete reproductive isolation despite adaptive divergence. We investigate patterns of mating isolation between populations that do and do not exchange migrants and show evidence for both by-product and reinforcement mechanisms depending on female ecology. Specifically, low-predation females discriminate against all high-predation males thus implying a by-product mechanism, whereas high-predation females only discriminate against low-predation males from further upstream in the same river, implying selection to avoid maladaptive mating. Our study thus confirms that mechanisms of adaptive speciation are not necessarily mutually exclusive and uncovers the complex ecology-geography interactions that underlie the evolution of mating isolation in nature

    Sexual Display and Mate Choice in an Energetically Costly Environment

    Get PDF
    Sexual displays and mate choice often take place under the same set of environmental conditions and, as a consequence, may be exposed to the same set of environmental constraints. Surprisingly, however, very few studies consider the effects of environmental costs on sexual displays and mate choice simultaneously. We conducted an experiment, manipulating water flow in large flume tanks, to examine how an energetically costly environment might affect the sexual display and mate choice behavior of male and female guppies, Poecilia reticulata. We found that male guppies performed fewer sexual displays and became less choosy, with respect to female size, in the presence of a water current compared to those tested in still water. In contrast to males, female responsive to male displays did not differ between the water current treatments and females exhibited no mate preferences with respect to male size or coloration in either treatment. The results of our study underscore the importance of considering the simultaneous effects of environmental costs on the sexual behaviors of both sexes

    Environmentally Realistic Exposure to the Herbicide Atrazine Alters Some Sexually Selected Traits in Male Guppies

    Get PDF
    Male mating signals, including ornaments and courtship displays, and other sexually selected traits, like male-male aggression, are largely controlled by sex hormones. Environmental pollutants, notably endocrine disrupting compounds, can interfere with the proper functioning of hormones, thereby impacting the expression of hormonally regulated traits. Atrazine, one of the most widely used herbicides, can alter sex hormone levels in exposed animals. I tested the effects of environmentally relevant atrazine exposures on mating signals and behaviors in male guppies, a sexually dimorphic freshwater fish. Prolonged atrazine exposure reduced the expression of two honest signals: the area of orange spots (ornaments) and the number of courtship displays performed. Atrazine exposure also reduced aggression towards competing males in the context of mate competition. In the wild, exposure levels vary among individuals because of differential distribution of the pollutants across habitats; hence, differently impacted males often compete for the same mates. Disrupted mating signals can reduce reproductive success as females avoid mating with perceptibly suboptimal males. Less aggressive males are at a competitive disadvantage and lose access to females. This study highlights the effects of atrazine on ecologically relevant mating signals and behaviors in exposed wildlife. Altered reproductive traits have important implications for population dynamics, evolutionary patterns, and conservation of wildlife species

    Convergent recombination suppression suggests role of sexual selection in guppy sex chromosome formation.

    Get PDF
    Sex chromosomes evolve once recombination is halted between a homologous pair of chromosomes. The dominant model of sex chromosome evolution posits that recombination is suppressed between emerging X and Y chromosomes in order to resolve sexual conflict. Here we test this model using whole genome and transcriptome resequencing data in the guppy, a model for sexual selection with many Y-linked colour traits. We show that although the nascent Y chromosome encompasses nearly half of the linkage group, there has been no perceptible degradation of Y chromosome gene content or activity. Using replicate wild populations with differing levels of sexually antagonistic selection for colour, we also show that sexual selection leads to greater expansion of the non-recombining region and increased Y chromosome divergence. These results provide empirical support for longstanding models of sex chromosome catalysis, and suggest an important role for sexual selection and sexual conflict in genome evolution

    The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs

    Get PDF
    Most temperate plants tolerate both chilling and freezing temperatures whereas many species from tropical regions suffer chilling injury when exposed to temperatures slightly above freezing. Cold acclimation induces the expression of cold-regulated genes needed to protect plants against freezing stress. This induction is mediated, in part, by the CBF transcription factor family. To understand the evolution and function of this family in cereals, we identified and characterized 15 different CBF genes from hexaploid wheat. Our analyses reveal that wheat species, T. aestivum and T. monococcum, may contain up to 25 different CBF genes, and that Poaceae CBFs can be classified into 10 groups that share a common phylogenetic origin and similar structural characteristics. Six of these groups (IIIc, IIId, IVa, IVb, IVc and IVd) are found only in the Pooideae suggesting they represent the CBF response machinery that evolved recently during colonization of temperate habitats. Expression studies reveal that five of the Pooideae-specific groups display higher constitutive and low temperature inducible expression in the winter cultivar, and a diurnal regulation pattern during growth at warm temperature. The higher constitutive and inducible expression within these CBF groups is an inherited trait that may play a predominant role in the superior low temperature tolerance capacity of winter cultivars and possibly be a basis of genetic variability in freezing tolerance within the Pooideae subfamily

    Comparative expression of Cbf genes in the Triticeae under different acclimation induction temperatures

    Get PDF
    In plants, the C-repeat binding factors (Cbfs) are believed to regulate low-temperature (LT) tolerance. However, most functional studies of Cbfs have focused on characterizing expression after an LT shock and have not quantified differences associated with variable temperature induction or the rate of response to LT treatment. In the Triticeae, rye (Secale cereale L.) is one of the most LT-tolerant species, and is an excellent model to study and compare Cbf LT induction and expression profiles. Here, we report the isolation of rye Cbf genes (ScCbfs) and compare their expression levels in spring- and winter-habit rye cultivars and their orthologs in two winter-habit wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) cultivars. Eleven ScCbfs were isolated spanning all four major phylogenetic groups. Nine of the ScCbfs mapped to 5RL and one to chromosome 2R. Cbf expression levels were variable, with stronger expression in winter- versus spring-habit rye cultivars but no clear relationship with cultivar differences in LT, down-stream cold-regulated gene expression and Cbf expression were detected. Some Cbfs were expressed only at warmer acclimation temperatures in all three species and their expression was repressed at the end of an 8-h dark period at warmer temperatures, which may reflect a temperature-dependent, light-regulated diurnal response. Our work indicates that Cbf expression is regulated by complex genotype by time by induction–temperature interactions, emphasizing that sample timing, induction–temperature and light-related factors must receive greater consideration in future studies involving functional characterization of LT-induced genes in cereals
    • …
    corecore