248 research outputs found

    Excitation spectrum of vortex lattices in rotating Bose-Einstein condensates

    Full text link
    Using the coarse grain averaged hydrodynamic approach, we calculate the excitation spectrum of vortex lattices sustained in rotating Bose-Einstein condensates. The spectrum gives the frequencies of the common-mode longitudinal waves in the hydrodynamic regime, including those of the higher-order compressional modes. Reasonable agreement with the measurements taken in a recent JILA experiment is found, suggesting that one of the longitudinal modes reported in the experiment is likely to be the n=2n=2, m=0m=0 mode.Comment: 2 figures. Submitted to Physical Review A. v2 contains more references. No change in the main resul

    Self-similar expansion of the density profile in a turbulent Bose-Einstein condensate

    Full text link
    In a recent study we demonstrated the emergence of turbulence in a trapped Bose-Einstein condensate of Rb-87 atoms. An intriguing observation in such a system is the behavior of the turbulent cloud during free expansion.The aspect ratio of the cloud size does not change in the way one would expect for an ordinary non-rotating (vortex-free) condensate. Here we show that the anomalous expansion can be understood, at least qualitatively, in terms of the presence of vorticity distributed throughout the cloud, effectively counteracting the usual reversal of the aspect ratio seen in free time-of-flight expansion of non-rotating condensates.Comment: 8 pages, 4 figure

    Effective Lagrangian and Quantum Screening in Charged Condensate

    Full text link
    A condensate of charged scalars in a neutralizing background of fermions (e.g., condensed helium-4 nuclei in an electron background in white dwarf cores) is investigated further. We discuss an effective Lagrangian approach to this system and show that the strong screening of an electric charge found previously in arXiv:0806.3692 in a mean-field approximation, is a consequence of a cancellation due to a phonon. The resulting propagators contain terms that strongly modify their infrared behavior. Furthermore, we evaluate a one-loop fermion quantum correction to the screened potential, and find that it is also suppressed by the phonon subtraction. Therefore, charged impurities (e.g., hydrogen or helium-3 nuclei) will be screened efficiently by the condensate.Comment: 1+16 pages; v2: typos & minor improvements; v3: one reference and one footnote added; two comments streamline

    The Transition to a Giant Vortex Phase in a Fast Rotating Bose-Einstein Condensate

    Get PDF
    We study the Gross-Pitaevskii (GP) energy functional for a fast rotating Bose-Einstein condensate on the unit disc in two dimensions. Writing the coupling parameter as 1 / \eps^2 we consider the asymptotic regime \eps \to 0 with the angular velocity Ω\Omega proportional to (\eps^2|\log\eps|)^{-1} . We prove that if \Omega = \Omega_0 (\eps^2|\log\eps|)^{-1} and Ω0>2(3π)1 \Omega_0 > 2(3\pi)^{-1} then a minimizer of the GP energy functional has no zeros in an annulus at the boundary of the disc that contains the bulk of the mass. The vorticity resides in a complementary `hole' around the center where the density is vanishingly small. Moreover, we prove a lower bound to the ground state energy that matches, up to small errors, the upper bound obtained from an optimal giant vortex trial function, and also that the winding number of a GP minimizer around the disc is in accord with the phase of this trial function.Comment: 52 pages, PDFLaTex. Minor corrections, sign convention modified. To be published in Commun. Math. Phy

    Periodic Vortex Structures in Superfluid 3He-A

    Full text link
    We discuss the general properties of periodic vortex arrangements in rotating superfluids. The different possible structures are classified according to the symmetry space-groups and the circulation number. We calculate numerically several types of vortex structures in superfluid 3He-A. The calculations are done in the Ginzburg-Landau region, but the method is applicable at all temperatures. A phase diagram of vortices is constructed in the plane formed by the magnetic field and the rotation velocity. The characteristics of the six equilibrium vortex solutions are discussed. One of these, the locked vortex 3, has not been considered in the literature before. The vortex sheet forms the equilibrium state of rotating 3He-A at rotation velocities exceeding 2.6 rad/s. The results are in qualitative agreement with experiments.Comment: 13 pages, 7 figures, http://boojum.hut.fi/research/theory/diagram.htm

    Theory of coherent Bragg spectroscopy of a trapped Bose-Einstein condensate

    Full text link
    We present a detailed theoretical analysis of Bragg spectroscopy from a Bose-Einstein condensate at T=0K. We demonstrate that within the linear response regime, both a quantum field theory treatment and a meanfield Gross-Pitaevskii treatment lead to the same value for the mean evolution of the quasiparticle operators. The observable for Bragg spectroscopy experiments, which is the spectral response function of the momentum transferred to the condensate, can therefore be calculated in a meanfield formalism. We analyse the behaviour of this observable by carrying out numerical simulations in axially symmetric three-dimensional cases and in two dimensions. An approximate analytic expression for the observable is obtained and provides a means for identifying the relative importance of three broadening and shift mechanisms (meanfield, Doppler, and finite pulse duration) in different regimes. We show that the suppression of scattering at small values of q observed by Stamper-Kurn et al. [Phys. Rev. Lett. 83, 2876 (1999)] is accounted for by the meanfield treatment, and can be interpreted in terms of the interference of the u and v quasiparticle amplitudes. We also show that, contrary to the assumptions of previous analyses, there is no regime for trapped condensates for which the spectral response function and the dynamic structure factor are equivalent. Our numerical calculations can also be performed outside the linear response regime, and show that at large laser intensities a significant decrease in the shift of the spectral response function can occur due to depletion of the initial condensate.Comment: RevTeX4 format, 16 pages plus 7 eps figures; Update to published version: minors changes and an additional figure. (To appear in Phys. Rev. A

    Conserving and Gapless Approximations for an Inhomogeneous Bose Gas at Finite Temperatures

    Full text link
    We derive and discuss the equations of motion for the condensate and its fluctuations for a dilute, weakly interacting Bose gas in an external potential within the self--consistent Hartree--Fock--Bogoliubov (HFB) approximation. Account is taken of the depletion of the condensate and the anomalous Bose correlations, which are important at finite temperatures. We give a critical analysis of the self-consistent HFB approximation in terms of the Hohenberg--Martin classification of approximations (conserving vs gapless) and point out that the Popov approximation to the full HFB gives a gapless single-particle spectrum at all temperatures. The Beliaev second-order approximation is discussed as the spectrum generated by functional differentiation of the HFB single--particle Green's function. We emphasize that the problem of determining the excitation spectrum of a Bose-condensed gas (homogeneous or inhomogeneous) is difficult because of the need to satisfy several different constraints.Comment: plain tex, 19 page
    corecore