50 research outputs found

    中国におけるゴミ処理問題と環境教育

    Get PDF

    CD4+T Lymphocyte Counting Technologies Based on Microfluidic Chip

    Get PDF
    Cd4+T淋巴细胞是人体免疫缺陷病毒(HIV)的主要感染细胞,慢性HIV感染者逐渐耗尽Cd4+T淋巴细胞,使免疫系统变弱,导致获得性免疫缺陷综合症(AIdS),因此,Cd4+T淋巴细胞的数量对HIV/AIdS的诊断和治疗至关重要。全球范围内HIV/AIdS正处于快速增长期,现有的Cd4+T淋巴细胞计数检测方法由于仪器昂贵、操作复杂、检测成本高,不利于疾病诊疗的普及与推广。为实现低成本、方便、快捷的临床检测,基于微流控芯片的Cd4+T淋巴细胞计数检测方法与技术的研究正日益受到人们的重视。本文在回顾传统Cd4+T淋巴细胞检测方法的基础上,综述、归纳了基于微流控芯片的Cd4+T淋巴细胞计数方法,在全面分析其技术特点的基础上,进一步评述了其综合性能、适用范围、及典型优缺点。最后,本文针对基于微流控芯片的Cd4+T淋巴细胞计数检测技术的发展趋势及商业化应用前景进行了讨论和展望。CD4+ T lymphocytes are the main infected targets of the Human Immunodeficiency Virus( HIV) in bodies.CD4 level w ill gradually decrease in HIV hosts w hen their immune systems are becoming more and more w eak,w hich finally causes Acquired Immune Deficiency Syndrome( AIDS).Therefore,the number of CD4+ T lymphocytes for HIV hosts at different stages is critical to the diagnosis and therapy of HIV/AIDS.For example,Antiretroviral therapy( ART) normally requires four periodical CD4 + T tests in one year for clinical diagnosis and treatment.Population w ith HIV/AIDS is increasing significantly all over the w orld in the past ten years.The existing methods for CD4+ T lymphocyte counting are unavailable to developing countries or undeveloped areas because of expensive devices, complicated procedures and high cost.To solve this problem, based on microfluidic technology,new CD4+ T lymphocyte counting methods are being intensively studied for low cost,rapid and convenient CD4+ T lymphocyte detection in the point-of-care test( POCT).After a brief introductionon traditional methods,this paper review s and summarizes CD4 + T lymphocyte counting methods based on microfluidic chips.The typical technical characteristics of chip-based CD4+ T lymphocyte counting methods are identified and grouped,and furthermore,their general performance,application area,and major advantages w ith disadvantages are discussed and evaluated in details.Finally, an outlook and conclusion for research,development and commercialization of CD4+ T lymphocyte counting based on microfluidic chip are given after a detailed discussion.国家自然科学基金项目(No.81371711); 中央高校基本科研业务费专项资金(No.ZZ1329;YS1404)~

    CuCe1-xMnxOy复合氧化物催化氧化碳烟颗粒性能的研究

    Get PDF
    利用反向共沉淀法合成CuCe1-xMnxOy复合氧化物催化剂,X射线衍射分析(XRD)和拉曼(Raman)表征结果表明,反向共沉淀法可以将Cu、Mn离子在CeO2晶格中有效掺杂并形成晶体粒径较小的固溶体。程序升温还原(H2-TPR)与X射线光电子能谱(XPS)表征结果表明,Cu、Mn、Ce之间存在强相互作用,有效提升了氧化物的氧化还原性能。所合成的CuCe1-xMnxOy复合氧化物系列催化剂在碳烟颗粒催化氧化中均表现出良好的反应活性,其中CuCe0.8Mn0.2催化剂表现出最佳活性,T50仅为354℃,并且在循环测试中也基本保持稳定。福建省自然科学基金(2015J05033)厦门大学校长基金(20720170043

    Discovery and structural characterization of a therapeutic antibody against coxsackievirus A10

    Get PDF
    9月20日,《科学》子刊《科学•进展》(Science Advances)刊出了我校夏宁邵教授团队发表的题为“Discovery and structural characterization of a therapeutic antibody against coxsackievirus A10”的研究论文。该研究首次发现手足口病重要病原体柯萨奇病毒A组10型(CVA10)不同类型病毒颗粒共有的优势中和表位,揭示了病毒颗粒及其与优势中和抗体复合物的精确三维结构,阐明了中和抗体的功能与作用机制,为新型疫苗和治疗药物的研制提供了重要的理论基础。 该研究首次揭示并描绘了CVA10的病毒颗粒及其优势中和表位的精确特征,发现了具有良好应用潜能的治疗性中和抗体,为新型疫苗和特异性治疗药物的研究提供了关键基础。 我校夏宁邵教授、程通副教授和美国加州大学洛杉矶分校纳米系统研究所Z. Hong Zhou(周正洪)教授、美国加州大学圣地亚哥分校颜晓东博士为该论文的共同通讯作者。我校博士生朱瑞、徐龙发博士后、郑清炳工程师、李少伟教授和美国加州大学洛杉矶分校崔彦祥博士后为该论文共同第一作者。【Abstract】Coxsackievirus A10 (CVA10) recently emerged as a major pathogen of hand, foot, and mouth disease and herpangina in children worldwide, and lack of a vaccine or a cure against CVA10 infections has made therapeutic antibody identification a public health priority. By targeting a local isolate, CVA10-FJ-01, we obtained a potent antibody, 2G8, against all three capsid forms of CVA10. We show that 2G8 exhibited both 100% preventive and 100% therapeutic efficacy against CVA10 infection in mice. Comparisons of the near-atomic cryo–electron microscopy structures of the three forms of CVA10 capsid and their complexes with 2G8 Fab reveal that a single Fab binds a border region across the three capsid proteins (VP1 to VP3) and explain 2G8’s remarkable cross-reactivities against all three capsid forms. The atomic structures of this first neutralizing antibody of CVA10 should inform strategies for designing vaccines and therapeutics against CVA10 infections.This work was supported by grants from the National Science and Technology Major Projects for Major New Drugs Innovation and Development (2018ZX09711003-005-003), the National Science and Technology Major Project of Infectious Diseases (2017ZX10304402-002-003), the National Natural Science Foundation of China (31670933 and 81801646), and the National Institutes of Health (R37-GM33050, GM071940, DE025567, and AI094386). We acknowledge the use of instruments at the Electron Imaging Center for Nanomachines supported by the University of California, Los Angeles and by instrumentation grants from NIH (1S10RR23057 and 1U24GM116792) and NSF (DBI-1338135 and DMR-1548924). 该研究获得了国家自然科学基金、新药创制国家科技重大专项、传染病防治国家科技重大专项和美国国立卫生研究院基金的资助
    corecore