60 research outputs found

    Microflow nanoprecipitation of positively charged gastroresistant polymer nanoparticles of Eudragit® RS100: A study of fluid dynamics and chemical parameters

    Get PDF
    The objective of the present work was to produce gastroresistant Eudragit® RS100 nanoparticles by a reproducible synthesis approach that ensured mono-disperse nanoparticles under the size of 100 nm. Batch and micromixing nanoprecipitation approaches were selected to produce the demanded nanoparticles, identifying the critical parameters affecting the synthesis process. To shed some light on the formulation of the targeted nanoparticles, the effects of particle size and homogeneity of fluid dynamics, and physicochemical parameters such as polymer concentration, type of solvent, ratio of solvent to antisolvent, and total flow rate were studied. The physicochemical characteristics of resulting nanoparticles were studied applying dynamic light scattering (DLS) particle size analysis and electron microscopy imaging. Nanoparticles produced using a micromixer demonstrated a narrower and more homogenous distribution than the ones obtained under similar conditions in conventional batch reactors. Besides, fluid dynamics ensured that the best mixing conditions were achieved at the highest flow rate. It was concluded that nucleation and growth events must also be considered to avoid uncontrolled nanoparticle growth and evolution at the collection vial. Further, rifampicin-encapsulated nanoparticles were prepared using both approaches, demonstrating that the micromixing-assisted approach provided an excellent control of the particle size and polydispersity index. Not only the micromixing-assisted nanoprecipitation promoted a remarkable control in the nanoparticle formulation, but also it enhanced drug encapsulation efficiency and loading, as well as productivity. To the best of our knowledge, this was the very first time that drug-loaded Eudragit® RS100 nanoparticles (NPs) were produced in a continuous fashion under 100 nm (16.5 ± 4.3 nm) using microreactor technology. Furthermore, we performed a detailed analysis of the influence of various fluid dynamics and physicochemical parameters on the size and uniformity of the resulting nanoparticles. According to these findings, the proposed methodology can be a useful approach to synthesize a myriad of nanoparticles of alternative polymers

    Encapsulation of iron-saturated lactoferrin for proteolysis protection with preserving iron coordination and sustained release

    Get PDF
    Lactoferrin (Lf) is a globular glycoprotein found mainly in milk. It has a very high affinity for iron(III) ions, and its fully saturated form is called holoLf. The antimicrobial, antiviral, anticancer, and immunomodulatory properties of Lf have been studied extensively for the past two decades. However, to demonstrate therapeutic benefits, Lf has to be efficiently delivered to the intestinal tract in its structurally intact form. This work aimed to optimize the encapsulation of holoLf in a system based on the versatile Eudragit® RS polymer to protect Lf against the proteolytic environment of the stomach. Microparticles (MPs) with entrapped holoLf were obtained with satisfactory entrapment efficiency (90–95%), high loading capacity (9.7%), and suitable morphology (spherical without cracks or pores). Detailed studies of the Lf release from the MPs under conditions that included simulated gastric or intestinal fluids, prepared according to the 10th edition of the European Pharmacopeia, showed that MPs partially protected holoLf against enzymatic digestion and ionic iron release. The preincubation of MPs loaded with holoLf under conditions simulating the stomach environment resulted in the release of 40% of Lf from the MPs. The protein released was saturated with iron ions at 33%, was structurally intact, and its iron scavenging properties were preserved

    Targeted release of probiotics from enteric microparticulated formulations

    Get PDF
    The development of advanced probiotic delivery systems, which preserve bacteria from degradation of the gastrointestinal tract and achieve a targeted release mediated by pH-independent swelling, is of great interest to improve the eficient delivery of probiotic bacteria to the target tissue. Gram-positive and Gram-negative bacteria models (Lactobacillus acidophilus (Moro) Hansen and Mocquot (ATCC®4356™) and Escherichia coli S17, respectively) have been successfully encapsulated for the first time in pH-independent microparticulate polymethacrylates (i.e., Eudraguard biotic) used for the targeted delivery of nutraceuticals to the colon. These bacteria have also been encapsulated within the mucoadhesive polymethacrylate Eudragit RS 100 widely used as targeted release formulation for active pharmaceutical ingredients. The enteric microparticles remained unaltered under simulated gastric conditions and released the contained viable microbial cargo under simulated intestinal conditions. Buoyancies of 90.2% and 57.3% for Eudragit and Eudraguard microparticles, respectively, and long-term stability (5 months) for the encapsulated microorganisms were found. Cytotoxicity of the microparticles formulated with both polymers was evaluated (0.5-20 mg/mL) on Caco-2 cells, showing high cytocompatibility. These results underline the suitability of the synthesized materials for the successful delivery of probiotic formulations to the target organ, highlighting for the first time the potential use of Eudraguard biotic as an effective enteric coating for the targeted delivery of probiotics

    Desarrollo de sistemas poliméricos mucoadhesivos de liberación controlada para la distribución localizada de agentes terapéuticos bioactivos

    Get PDF
    La investigación sobre el diseño de nuevos vectores de liberación controlada de fármacos o biomoléculas ha estado en continuo desarrollo desde los años 50 (siglo XX). Es necesaria la modificación de las propiedades físico-químicas de numerosos agentes terapéuticos para poder mejorar sus perfiles farmacocinéticos, farmacodinámicos y su biodistribución. Las principales limitaciones de muchos de estos agentes terapéuticos en su administración son la escasa solubilidad en los fluidos del organismo y la inestabilidad que presentan ante algunas condiciones a las que se exponen en el interior del organismo, como drásticos cambios de pH, fagocitosis o degradaciones enzimáticas. Es por esto que se precisan sistemas de liberación de estos bioagentes, para protegerlos y favorecer su acción terapéutica. Un punto clave en el diseño de estos nuevos sistemas de liberación es la vía de administración ya que, dependiendo de ésta, el agente bioactivo va a exponerse a ciertas condiciones y va a tener que atravesar unas barreras determinadas. Las investigaciones recientes se centran, en su mayoría, en las vías de administración no invasivas ya que apuestan por la sencillez, comodidad y autonomía de administración para la mejora de calidad de vida del paciente. Tanto la forma, el tamaño, como la morfología del vector van a influir en la vía de administración y en la biodistribución del bioagente que va a ser administrado. Este trabajo de tesis titulado “Desarrollo de sistemas poliméricos mucoadhesivos de liberación controlada para la distribución localizada de agentes terapéuticos bioactivos” se centra en la aplicación de diversas técnicas de síntesis de sistemas de liberación poliméricos, como el método de emulsión doble, el método de nanoprecipitación y la aplicación de la tecnología microfluídica o las técnicas electrohidrodinámicas. La aplicación de estas técnicas han sido claves para el diseño y desarrollo de sistemas de liberación controlada de diversos agentes bioactivos basados en el polímero Eudragit® RS100, que presenta un mecanismo de liberación controlado en el tiempo y propiedades mucoadhesivas. Por lo tanto, en este trabajo de Tesis doctoral se han desarrollado vectores de diferentes tamaños y morfologías para la liberación controlada en el tiempo de agentes bioactivos mediante su administración por vías no invasivas, principalmente, mediante la vía oral. De todos ellos se ha comprobado su idoneidad como agentes terapéuticos que mejoran las propiedades farmacocinéticas y la estabilidad, preservando la actividad terapéutica del agente encapsulado.<br /

    Insights into the single-particle composition, size, mixing state, and aspect ratio of freshly emitted mineral dust from field measurements in the Moroccan Sahara using electron microscopy

    Get PDF
    The chemical and morphological properties of mineral dust aerosols emitted by wind erosion from arid and semi-arid regions influence climate, ocean, and land ecosystems; air quality; and multiple socio-economic sectors. However, there is an incomplete understanding of the emitted dust particle size distribution (PSD) in terms of its constituent minerals that typically result from the fragmentation of soil aggregates during wind erosion. The emitted dust PSD affects the duration of particle transport and thus each mineral\u27s global distribution, along with its specific effect upon climate. This lack of understanding is largely due to the scarcity of relevant in situ measurements in dust sources. To advance our understanding of the physicochemical properties of the emitted dust PSD, we present insights into the elemental composition and morphology of individual dust particles collected during the FRontiers in dust minerAloGical coMposition and its Effects upoN climaTe (FRAGMENT) field campaign in the Moroccan Sahara in September 2019. We analyzed more than 300 000 freshly emitted individual particles by performing offline analysis in the laboratory using scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectrometry (EDX). Eight major particle-type classes were identified with clay minerals making up the majority of the analyzed particles both by number and mass, followed by quartz, whereas carbonates and feldspar contributed to a lesser extent. We provide an exhaustive analysis of the PSD and potential mixing state of different particle types, focusing largely on iron-rich (Fe oxide-hydroxides) and feldspar particles, which are key to the effects of dust upon radiation and clouds, respectively. Nearly pure or externally mixed Fe oxide-hydroxides are present mostly in diameters smaller than 2 µm, with the highest fraction below 1 µm at about 3.75 % abundance by mass. Fe oxide-hydroxides tend to be increasingly internally mixed with other minerals, especially clays, as particle size increases; i.e., the volume fraction of Fe oxide-hydroxides in aggregates decreases with particle size. Pure (externally mixed) feldspar represented 3.2 % of all the particles by mass, of which we estimated about a 10th to be K-feldspar. The externally mixed total feldspar and K-feldspar abundances are relatively invariant with particle size, in contrast to the increasing abundance of feldspar-like (internally mixed) aggregates with particle size with mass fractions ranging from 5 % to 18 %. We also found that overall the median aspect ratio is rather constant across particle size and mineral groups, although we obtain slightly higher aspect ratios for internally mixed particles. The detailed information on the composition of freshly emitted individual dust particles and quantitative analysis of their mixing state presented here can be used to constrain climate models including mineral species in their representation of the dust cycle

    Encapsulation of Large-Size Plasmids in PLGA Nanoparticles for Gene Editing: Comparison of Three Different Synthesis Methods

    Get PDF
    The development of new gene-editing technologies has fostered the need for efficient and safe vectors capable of encapsulating large nucleic acids. In this work we evaluate the synthesis of large-size plasmid-loaded PLGA nanoparticles by double emulsion (considering batch ultrasound and microfluidics-assisted methodologies) and magnetic stirring-based nanoprecipitation synthesis methods. For this purpose, we characterized the nanoparticles and compared the results between the different synthesis processes in terms of encapsulation efficiency, morphology, particle size, polydispersity, zeta potential and structural integrity of loaded pDNA. Our results demonstrate particular sensibility of large pDNA for shear and mechanical stress degradation during double emulsion, the nanoprecipitation method being the only one that preserved plasmid integrity. However, plasmid-loaded PLGA nanoparticles synthesized by nanoprecipitation did not show cell expression in vitro, possibly due to the slow release profile observed in our experimental conditions. Strong electrostatic interactions between the large plasmid and the cationic PLGA used for this synthesis may underlie this release kinetics. Overall, none of the methods evaluated satisfied all the requirements for an efficient non-viral vector when applied to large-size plasmid encapsulation. Further optimization or alternative synthesis methods are thus in current need to adapt PLGA nanoparticles as delivery vectors for gene editing therapeutic technologies

    The effect of titanium dioxide surface modification on the dispersion, morphology, and mechanical properties of recycled PP/PET/TiO2 PBNANOs

    Get PDF
    Titanium dioxide (TiO2) nanoparticles have recently appeared in PET waste because of the introduction of opaque PET bottles. We prepare polymer blend nanocomposites (PBNANOs) by adding hydrophilic (hphi), hydrophobic (hpho), and hydrophobically modified (hphoM) titanium dioxide (TiO2) nanoparticles to 80rPP/20rPET recycled blends. Contact angle measurements show that the degree of hydrophilicity of TiO2 decreases in the order hphi &gt; hpho &gt; hphoM. A reduction of rPET droplet size occurs with the addition of TiO2 nanoparticles. The hydrophilic/hydrophobic balance controls the nanoparticles location. Transmission electron microscopy (TEM_ shows that hphi TiO2 preferentially locates inside the PET droplets and hpho at both the interface and PP matrix. HphoM also locates within the PP matrix and at the interface, but large loadings (12%) can completely cover the surfaces of the droplets forming a physical barrier that avoids coalescence, leading to the formation of smaller droplets. A good correlation is found between the crystallization rate of PET (determined by DSC) and nanoparticles location, where hphi TiO2 induces the highest PET crystallization rate. PET lamellar morphology (revealed by TEM) is also dependent on particle location. The mechanical behavior improves in the elastic regime with TiO2 addition, but the plastic deformation of the material is limited and strongly depends on the type of TiO2 employed

    Variability in sediment particle size, mineralogy, and Fe mode of occurrence across dust-source inland drainage basins:the case of the lower Drâa Valley, Morocco

    Get PDF
    The effects of desert dust upon climate and ecosystems depend strongly on its particle size and size-resolved mineralogical composition. However, there is very limited quantitative knowledge on the particle size and composition of the parent sediments along with their variability within dust-source regions, particularly in dust emission hotspots. The lower Drâa Valley, an inland drainage basin and dust hotspot region located in the Moroccan Sahara, was chosen for a comprehensive analysis of sediment particle size and mineralogy. Different sediment type samples (n=42) were collected, including paleo-sediments, paved surfaces, crusts, and dunes, and analysed for particle-size distribution (minimally and fully dispersed samples) and mineralogy. Furthermore, Fe sequential wet extraction was carried out to characterise the modes of occurrence of Fe, including Fe in Fe (oxyhydr)oxides, mainly from goethite and hematite, which are key to dust radiative effects; the poorly crystalline pool of Fe (readily exchangeable ionic Fe and Fe in nano-Fe oxides), relevant to dust impacts upon ocean biogeochemistry; and structural Fe. Results yield a conceptual model where both particle size and mineralogy are segregated by transport and deposition of sediments during runoff of water across the basin and by the precipitation of salts, which causes a sedimentary fractionation. The proportion of coarser particles enriched in quartz is higher in the highlands, while that of finer particles rich in clay, carbonates, and Fe oxides is higher in the lowland dust emission hotspots. There, when water ponds and evaporates, secondary carbonates and salts precipitate, and the clays are enriched in readily exchangeable ionic Fe, due to sorption of dissolved Fe by illite. The results differ from currently available mineralogical atlases and highlight the need for observationally constrained global high-resolution mineralogical data for mineral-speciated dust modelling. The dataset obtained represents an important resource for future evaluation of surface mineralogy retrievals from spaceborne spectroscopy.</p
    corecore