50 research outputs found

    Low energy n-\nuc{3}{H} scattering : a novel testground for nuclear interaction

    Full text link
    The low energy n-\nuc{3}{H} elastic cross sections near the resonance peak are calculated by solving the 4-nucleon problem with realistic NN interactions. Three different methods -- Alt, Grassberger and Shandas (AGS), Hyperspherical Harmonics and Faddeev-Yakubovsky -- have been used and their respective results are compared. We conclude on a failure of the existing NN forces to reproduce the n-\nuc{3}{H} total cross section.Comment: To be published in Phys. Rev.

    The Four-Boson System with Short-Range Interactions

    Get PDF
    We consider the non-relativistic four-boson system with short-range forces and large scattering length in an effective quantum mechanics approach. We construct the effective interaction potential at leading order in the large scattering length and compute the four-body binding energies using the Yakubovsky equations. Cutoff independence of the four-body binding energies does not require the introduction of a four-body force. This suggests that two- and three-body interactions are sufficient to renormalize the four-body system. We apply the equations to 4He atoms and calculate the binding energy of the 4He tetramer. We observe a correlation between the trimer and tetramer binding energies similar to the Tjon line in nuclear physics. Over the range of binding energies relevant to 4He atoms, the correlation is approximately linear.Comment: 23 pages, revtex4, 5 PS figures, discussion expanded, results unchange

    Binding and structure of tetramers in the scaling limit

    Full text link
    The momentum-space structure of the Faddeev-Yakubovsky (FY)components of weakly-bound tetramers is investigated at the unitary limit using a renormalized zero-range two-body interaction. The results, obtained by considering a given trimer level with binding energy B3B_3, provide further support to a universal scaling function relating the binding energies of two successive tetramer states. The correlated scaling between the tetramer energies comes from the sensitivity of the four-boson system to a short-range four-body scale. Each excited NN-th tetramer energy B4(N)B_4^{(N)} moves as the short-range four-body scale changes, while the trimer properties are kept fixed, with the next excited tetramer B4(N+1)B_4^{(N+1)} emerging from the atom-trimer threshold for a universal ratio B4(N)/B3=B4(N)/B4(N+1)4.6B_4^{(N)}/B_3 = B_4^ {(N)}/B_4^{(N+1)} \simeq 4.6, which does not depend on NN. We show that both channels of the FY decomposition [atom-trimer (KK-type) and dimer-dimer (HH-type)] present high momentum tails, which reflect the short-range four-body scale. We also found that the HH-channel is favored over KK-channel at low momentum when the four-body momentum scale largely overcomes the three-body one.Comment: To appear in PR

    Benchmark calculation of n-3H and p-3He scattering

    Full text link
    The n-3H and p-3He elastic phase-shifts below the trinucleon disintegration thresholds are calculated by solving the 4-nucleon problem with three different realistic nucleon-nucleon interactions (the I-N3LO model by Entem and Machleidt, the Argonne v18 potential model, and a low-k model derived from the CD-Bonn potential). Three different methods -- Alt, Grassberger and Sandhas, Hyperspherical Harmonics, and Faddeev-Yakubovsky -- have been used and their respective results are compared. For both n-3H and p-3He we observe a rather good agreement between the three different theoretical methods. We also compare the theoretical predictions with the available experimental data, confirming the large underprediction of the p-3He analyzing power.Comment: 18 pages, 9 figure

    Spurious states in the Faddeev formalism for few-body systems

    Get PDF
    We discuss the appearance of spurious solutions of few-body equations for Faddeev amplitudes. The identification of spurious states, i.e., states that lack the symmetry required for solutions of the Schroedinger equation, as well as the symmetrization of the Faddeev equations is investigated. As an example, systems of three and four electrons, bound in a harmonic-oscillator potential and interacting by the Coulomb potential, are presented.Comment: 11 pages. REVTE

    Properties of 12^{12}C in the {\it ab initio} nuclear shell-model

    Get PDF
    We obtain properties of 12^{12}C in the {\it ab initio} no-core nuclear shell-model. The effective Hamiltonians are derived microscopically from the realistic CD-Bonn and the Argonne V8' nucleon-nucleon (NN) potentials as a function of the finite harmonic oscillator basis space. Binding energies, excitation spectra and electromagnetic properties are presented for model spaces up to 5Ω5\hbar\Omega. The favorable comparison with available data is a consequence of the underlying NN interaction rather than a phenomenological fit.Comment: 9 pages, 2 figure

    Few-nucleon systems in translationally invariant harmonic oscillator basis

    Get PDF
    We present a translationally invariant formulation of the no-core shell model approach for few-nucleon systems. We discuss a general method of antisymmetrization of the harmonic-oscillator basis depending on Jacobi coordinates. The use of a translationally invariant basis allows us to employ larger model spaces than in traditional shell-model calculations. Moreover, in addition to two-body effective interactions, three- or higher-body effective interactions as well as real three-body interactions can be utilized. In the present study we apply the formalism to solve three and four nucleon systems interacting by the CD-Bonn nucleon-nucleon potential. Results of ground-state as well as excited-state energies, rms radii and magnetic moments are discussed. In addition, we compare charge form factor results obtained using the CD-Bonn and Argonne V8' NN potentials.Comment: 25 pages. RevTex. 13 Postscript figure

    Four-nucleon shell-model calculations in a Faddeev-like approach

    Get PDF
    We use equations for Faddeev amplitudes to solve the shell-model problem for four nucleons in the model space that includes up to 14 hbar Omega harmonic-oscillator excitations above the unperturbed ground state. Two- and three-body effective interactions derived from the Reid93 and Argonne V8' nucleon-nucleon potentials are used in the calculations. Binding energies, excitations energies, point-nucleon radii and electromagnetic and strangeness charge form factors for 4He are studied. The structure of the Faddeev-like equations is discussed and a formula for matrix elements of the permutation operators in a harmonic-oscillator basis is given. The dependence on harmonic-oscillator excitations allowed in the model space and on the harmonic-oscillator frequency is investigated. It is demonstrated that the use of the three-body effective interactions improves the convergence of the results.Comment: 22 pages, 13 figures, REVTe

    Two-body correlations in N-body boson systems

    Full text link
    We formulate a method to study two-body correlations in a system of N identical bosons interacting via central two-body potentials. We use the adiabatic hyperspherical approach and assume a Faddeev-like decomposition of the wave function. For a fixed hyperradius we derive variationally an optimal integro-differential equation for hyperangular eigenvalue and wave function. This equation reduces substantially by assuming the interaction range much smaller than the size of the N-body system. At most one-dimensional integrals then remain. We view a Bose-Einstein condensate pictorially as a structure in the landscape of the potential given as a function of the one-dimensional hyperradial coordinate. The quantum states of the condensate can be located in one of the two potential minima. We derive and discuss properties of the solutions and illustrate with numerical results. The correlations lower the interaction energy substantially. The new multi-body Efimov states are solutions independent of details of the two-body potential. We compare with mean-field results and available experimental data.Comment: 19 pages (RevTeX4), 13 figures (latex). Journal-link: http://pra.aps.org

    Benchmark Test Calculation of a Four-Nucleon Bound State

    Get PDF
    In the past, several efficient methods have been developed to solve the Schroedinger equation for four-nucleon bound states accurately. These are the Faddeev-Yakubovsky, the coupled-rearrangement-channel Gaussian-basis variational, the stochastic variational, the hyperspherical variational, the Green's function Monte Carlo, the no-core shell model and the effective interaction hyperspherical harmonic methods. In this article we compare the energy eigenvalue results and some wave function properties using the realistic AV8' NN interaction. The results of all schemes agree very well showing the high accuracy of our present ability to calculate the four-nucleon bound state.Comment: 17 pages, 1 figure
    corecore