8,487 research outputs found

    A new deep-sea pennatulacean (Anthozoa: Octocorallia: Chunellidae) from the Porcupine Abyssal Plain (NE Atlantic)

    Get PDF
    During the BENGAL cruises, an important collection of deep-sea benthic organisms was sampled. Among the pennatulacean colonies, a previously undescribed species of chunellid was collected. That material is here described as the type species of a new genus, Porcupinella gen. nov. The new genus and species are described based on material collected in the Porcupine Abyssal Plain (NE Atlantic), 4,839–4,847 m in depth. This is the first time that a chunellid is reported from the Atlantic Ocean. The new genus is compared with the other genera in the family, and some phylogenetic remarks about the families Chunellidae and Umbellulidae are also provided

    Introduction

    Get PDF

    Incubating Monsters: Prosecutorial Responsibility for the Rampart Scandal

    Get PDF

    Returns to Soybean Producers from Investments in Promotion and Research

    Get PDF
    U.S. soybean producers have been cooperatively investing in both production research and demand promotion for nearly four decades to enhance the profitability and international competitiveness of their industry. Have producers benefitted from their contributions to soybean checkoff program activities over the years? How has the return to investments in soybean production research compared to that of soybean demand promotion investments? The overall positive returns to producers over the study period resulted primarily from promotion activities. Production research contributed negatively to overall producer returns from soybean checkoff investments.Agribusiness,

    Vortex Fluctuations in the Critical Casimir Effect of Superfluid and Superconducting Films

    Full text link
    Vortex-loop renormalization techniques are used to calculate the magnitude of the critical Casimir forces in superfluid films. The force is found to become appreciable when size of the thermal vortex loops is comparable to the film thickness, and the results for T < Tc are found to match very well with perturbative renormalization theories that have only been carried out for T > Tc. When applied to a high-Tc superconducting film connected to a bulk sample, the Casimir force causes a voltage difference to appear between the film and bulk, and estimates show that this may be readily measurable.Comment: 4 pages, 5 figures, Revtex 4, typo correctio

    Neuroendocrine Pathways Mediating Nutritional Acceleration of Puberty: Insights from Ruminant Models

    Get PDF
    The pubertal process is characterized by an activation of physiological events within the hypothalamic-adenohypophyseal–gonadal axis which culminate in reproductive competence. Excessive weight gain and adiposity during the juvenile period is associated with accelerated onset of puberty in females. The mechanisms and pathways by which excess energy balance advances puberty are unclear, but appear to involve an early escape from estradiol negative feedback and early initiation of high-frequency episodic gonadotropin-releasing hormone (GnRH) secretion. Hypothalamic neurons, particularly neuropeptide Y and proopiomelanocortin neurons are likely important components of the pathway sensing and transmitting metabolic information to the control of GnRH secretion. Kisspeptin neurons may also have a role as effector neurons integrating metabolic and gonadal steroid feedback effects on GnRH secretion at the time of puberty. Recent studies indicate that leptin-responsive neurons within the ventral premammillary nucleus play a critical role in pubertal progression and challenge the relevance of kisspeptin neurons in this process. Nevertheless, the nutritional control of puberty is likely to involve an integration of major sensor and effector pathways that interact with modulatory circuitries for a fine control of GnRH neuron function. In this review, observations made in ruminant species are emphasized for a comparative perspective

    Crystallization of dense binary hard-sphere mixtures with marginal size ratio

    No full text
    Molecular dynamics simulations are performed for binary hard-sphere mixtures with a size ratio of γ=0.9 and a volume fraction of ϕ=0.58 over a range of compositions. We show how, at this high volume fraction, crystallization depends sensitively on the composition. Evidence is presented that crystallization in these mixtures does not proceed by the standard nucleation and growth paradigm. Rather, some crystallite forms almost immediately and then an interplay between compositional fluctuations and crystal growth is able to dramatically extend the time scale on which further crystallization occurs. This can be seen as a form of geometric frustration

    Merged ionization/dissociation fronts in planetary nebulae

    Get PDF
    The hydrogen ionization and dissociation front around an ultraviolet radiation source should merge when the ratio of ionizing photon flux to gas density is sufficiently low and the spectrum is sufficiently hard. This regime is particularly relevant to the molecular knots that are commonly found in evolved planetary nebulae, such as the Helix Nebula, where traditional models of photodissociation regions have proved unable to explain the high observed luminosity in H_2 lines. In this paper we present results for the structure and steady-state dynamics of such advection-dominated merged fronts, calculated using the Cloudy plasma/molecular physics code. We find that the principal destruction processes for H_2 are photoionization by extreme ultraviolet radiation and charge exchange reactions with protons, both of which form H_2^+, which rapidly combines with free electrons to undergo dissociative recombination. Advection moves the dissociation front to lower column densities than in the static case, which vastly increases the heating in the partially molecular gas due to photoionization of He^0, H_2, and H^0. This causes a significant fraction of the incident bolometric flux to be re-radiated as thermally excited infrared H_2 lines, with the lower excitation pure rotational lines arising in 1000 K gas and higher excitation H_2 lines arising in 2000 K gas, as is required to explain the H_2 spectrum of the Helix cometary knots.Comment: 4 pages, accepted by ApJL, scheduled December 20 issu

    Octocorals in the Galapagos Islands

    Get PDF
    The Galapagos octocorals were almost unknown until recent years. Of the three orders within the subclass Octocorallia (Anthozoa, Cnidaria), the Pennatulacea (sea pens) and Alcyonacea (soft corals and gorgonians) occur in the Galapagos. Recent collections and research bring the total known octocorallian fauna to three sea pens (Virgularia galapagensis, Ptilosarcus undulatus and Cavernulina darwini) and 15 gorgonians. Of the 13 gorgonians that we have collected, several are new species. Pacifigorgia is widely distributed in the archipelago, with four named species (P. dampieri, P. symbiotica, P. rubripunctata, and P. darwinii), three of them recently described, and two others yet to be described. The genus Muricea contains three widely distributed undescribed species, one of which appears in three chromotypes, and one deepwater species that has not been collected recently. Two species of Heterogorgia occur in the central archipelago, H. verrucosa and the recently described and widely distributed H. hickmani. The remaining gorgonians are Eugorgia daniana, Leptogorgia alba and Adelogorgia telones

    Information Requirements for Supervisory Air Traffic Controllers in Support of a Wake Vortex Departure System

    Get PDF
    Closely Space Parallel Runway (CSPR) configurations are capacity limited for departures due to the requirement to apply wake vortex separation standards from traffic departing on the adjacent parallel runway. To mitigate the effects of this constraint, a concept focusing on wind dependent departure operations has been developed, known as the Wake Turbulence Mitigation for Departures (WTMD). This concept takes advantage of the fact that crosswinds of sufficient velocity blow wakes generated by aircraft departing from the downwind runway away from the upwind runway. Consequently, under certain conditions, wake separations on the upwind runway would not be required based on wakes generated by aircraft on the downwind runway, as is currently the case. It follows that information requirements, and sources for this information, would need to be determined for airport traffic control tower (ATCT) supervisory personnel who would be charged with decisions regarding use of the procedure. To determine the information requirements, data were collected from ATCT supervisors and controller-in-charge qualified individuals at Lambert-St. Louis International Airport (STL) and George Bush Houston Intercontinental Airport (IAH). STL and IAH were chosen as data collection sites based on the implementation of a WTMD prototype system, operating in shadow mode, at these locations. The 17 total subjects (STL: 5, IAH: 12) represented a broad-base of air traffic experience. Results indicated that the following information was required to support the conduct of WTMD operations: current and forecast weather information, current and forecast traffic demand and traffic flow restrictions, and WTMD System status information and alerting. Subjects further indicated that the requisite information is currently available in the tower cab with the exception of the WTMD status and alerting. Subjects were given a demonstration of a display supporting the prototype systems and unanimously stated that the WTMD status information they felt important was represented. Overwhelmingly, subjects felt that approving, monitoring and terminating the WTMD procedure could be integrated into their supervisory workload
    corecore