544 research outputs found

    A study of growth, development and N-fixation of several white clover (Trifolium repens L.) cultivars under different water deficit and phosphorus levels : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Massey University, Palmerston North, New Zealand

    Get PDF
    White clover (Trifolium repens L.) is one of the most important pasture plants in New Zealand. It contributes nitrogen, high quality forage and seasonal spread of production. However, it has high requirements for phosphate and does not persist well under moisture stress condition.s In this study the effects of water deficit level and phosphorus (P) level on the growth, development and N-fixation of different white clover cultivars have been studied. Several New Zealand and overseas white clover cultivars of contrasting morphological characteristics were selected for this study. These cultivars were Kopu, Pitau, Dusi, Haifa, Huia, Tahora and Whatawhata. The main objectives of this study were to determine the effects of water stress and phosphorus levels on growth, development, and N-fixation of these cultivars and to identify the plant characteristics most effective in distinguishing the cultivars used in the study. The research approach was to measure the responses of these cultivars to water deficit and P fertility treatments; and the responses were then related to selected plant characteristics, particularly morphological characteristics. Attempt was also made to distingish the cultivars using multivariate analysis techniques. The results of this study showed that the cultivars had responded differently to water deficit treatment and P treatment. The retardation they suffered in their growth and development, expressed by both dry weight (DW) and growth rate of stonon components (leaf, petiole and branch), was significantly different and, in many cases, could be related back to their morphology and development characteristics. Cultivars of small stature, such as Whatawhata and Tahora, were generally less affected by the stress treatments. Cultivars grown well under control conditions, such as Kopu and Haifa, suffered more severely under stress conditions. For all cultivars, parameters association with leaf area were more sensitive to water deficit stress than those associated with growing points. The study of plant water status of these cultivars under progressively decreasing water availability failed to identify any significant difference between the cultivars in their ability to avoid dehydration at medium to high water deficity stress levels. So it could be suggested that the diference between the cultivars represented their ability to tolerate water stress and was unlikely to be associated with their dehydration avoidance ability but more likely to be associated with morphological characteristics such as deep root and reducing leaf area when water deficit stress occurred. The cultivats were different in their N-fixation ability, as measured by the acetylene reduction analysis (ARA), and this difference was related strongly to leaf size. But when expressed as ARA per unit DW, the difference between the cultivars was non-significant. Overall, under control conditions, mainly the morphological characteristics, such as leaf size, leaf weight and petiole length, caused the difference between cultivars, other characteristics, such as the plant DW components, DW partitioning, and P and N partitioning in plant components, were less important. Among the morphological characteristics, leaf size and leaf weight per stolon were the most important characteristics differentiating between cultivars. These two characteristcs were also the most important for determining plant yield. Under water deficit stress and P deficiency treatment, root DW and branch number were the two most important characteristics differentiating between the cultivars. ABSTRACT White clover (Trifolium repens L.) is one of the most important pasture plants in New Zealand. It contributes nitrogen, high quality forage and seasonal spread of production. However, it has high requirements for phosphate and does not persist well under moisture stress conditions. In this study the effects of water deficit level and phosphorus (P) level on the growth, development and N-fixation of different white clover cultivars have been studied. Several New Zealand and overseas white clover cultivars of contrasting morphological characteristics were selected for this study. These cultivars were Kopu, Pitau, Dusi, Haifa, Huia, Tahora and Whatawhata. The main objectives of this study were to determine the effects of water stress and phosphorus levels on growth, development, and N-fixation of these cultivars and to identify the plant characteristics most effective in distinguishing the cultivars used in the study. The research approach was to measure the responses of these cultivars to water deficit and P fertility treatments; and the responses were then related to selected plant characteristics, particularly morphological characteristics. Attempt was also made to distinguish the cultivars using multivariate analysis techniques. The results of this study showed that the cultivars had responded differently to water deficit treatment and P treatments. The retardation they suffered in their growth and development, expressed by both dry weight (DW) and growth rate of stolon components (leaf, petiole and branch), was significantly different and, in many cases, could be related back to their morphology and development characteristics. Cultivars of small stature, such as Whatawhata and Tahora, were generally less affected by the stress treatments. Cultivars grown well under control conditions, such as Kopu and Haifa, suffered more severely under stress conditions. For all cultivars, parameters associated with leaf area were more sensitive to water deficit stress than those associated with growing points. The study of plant water status of these cultivars under progressively decreasing water availability failed to identify any significant difference between the cultivars in their ability to avoid dehydration at medium to high water deficit stress levels. So it could be suggested that the difference between the cultivars represented their ability to tolerate water stress and was unlikely to be associated with their dehydration avoidance ability bu

    Evaluación de la cohorte occidental de invierno-primavera del calamar volador neon (Ommastrephes bartramii) utilizando modelos de producción excedente dependientes del medio ambiente

    Get PDF
    The western winter-spring cohort of neon flying squid, Ommastrephes bartramii, is targeted by Chinese squidjigging fisheries in the northwest Pacific from August to November. Because this squid has a short lifespan and is an ecological opportunist, the dynamics of its stock is greatly influenced by the environmental conditions, which need to be considered in its assessment and management. In this study, an environmentally dependent surplus production (EDSP) model was developed to evaluate the stock dynamics of O. bartramii. Temporal variability of favourable spawning habitat with sea surface temperature (SST) of 21-25°C (Ps) was assumed to influence carrying capacity (K), while temporal variability in favourable feeding habitat areas with different SST ranges in different months (Pf) was assumed to influence intrinsic growth rate (r). The parameters K and r in the EDSP model were thus assumed to be linked to temporal variability in the proportion of Ps and Pf, respectively. According to Deviance Information Criterion values, the estimated EDSP model with Ps was considered to be better than the conventional surplus production model or other EDSP models. For this model, the maximum sustainable yield (MSY) varied from 210000 to 262500 t and biomass at MSY level varied from 360000 to 450000 t. The fishing mortality rates of O. bartramii from 2003 to 2013 were much lower than the fishing mortality at target level and MSY level (Ftar and FMSY) and stock biomass was higher than BMSY, suggesting that this squid was not in the status of overfishing and stock was not overfished. The management reference points in the EDSP model for O. bartramii were more conservative than those in the conventional model. This study suggests that the environmental conditions on the spawning grounds should be considered in squid stock assessment and management in the northwest Pacific Ocean.La cohorte occidental de invierno-primavera de los calamares voladores neon, Ommastrephes bartramii, es objeto de las pesquerías chinas de calamares que operan con jigging en el Pacifico Noroeste, desde agosto a noviembre. Debido a que esta especie tiene un ciclo de vida corto y es ecológicamente oportunista, la dinámica de este stock de calamares está muy influenciada por las condiciones ambientales, las cuales necesitan ser consideradas en su evaluación y manejo. En este estudio fue desarrollado un modelo de producción excedente ambientalmente dependiente (PEAD), para evaluar la dinámica del stock de O. bartramii. Se asumió que la variabilidad temporal de un hábitat favorable para el desove sea a una temperatura superficial del mar de 21-25°C (Ps), para influir en la capacidad de carga (K); mientras que la variabilidad temporal en áreas con hábitat favorable para la alimentación, fue asumida con diferentes rangos de temperatura superficial del mar en diferentes meses (Pf), para influir la tasa intrínseca de crecimiento (r). Los parámetros K y r en el modelo PEAD fueron asumidos como vinculados a la variabilidad temporal en la proporción Ps y Pf , respectivamente. De acuerdo a los valores del Criterio de Información de la Desvianza, el modelo PEAD estimado con Ps fue considerado el mejor, comparado con los modelos de producción excedente convencionales, así como otros modelos PEAD. Para este modelo el rendimiento máximo sostenible (RMS) estuvo entre 210000 a 262500 t y la biomasa al nivel RMS, entre de 360000 a 450000 t. Las tasas de mortalidad por pesca de O. bartramii entre 2003 a 2013 fueron mucho menores que la mortalidad por pesca a nivel objetivo y nivel de RMS (Ftar and FRMS) y la biomasa del stock fue superior a BRMS, sugiriendo que este calamar no estuvo en el estado de sobrepesca y el stock no fue sobrepescado. Los puntos de referencia de manejo (PRMs) en el modelo PEAD para O. bartramii fueron más conservativos que aquéllos obtenidos en los modelos convencionales. Este estudio sugiere que las condiciones ambientales sobre las zonas de desove deberían ser consideradas en las evaluaciones y en el manejo de stock de calamares en el Océano Pacifico Noroeste

    Influencia de factores ambientales sobre potas oceánicas (Cephalopoda: Ommastrephidae) explotadas comercialmente: un enfoque para la gestión de stocks

    Get PDF
    Ommastrephid squids are short-lived ecological opportunists and their recruitment is largely driven by the surrounding environment. While recent studies suggest that recruitment variability in several squid species can be partially explained by environmental variability derived from synoptic oceanographic data, assessment of ommastrephid stocks using environmental variability is rare. In thisstudy, we modified asurplus production model to incorporate environmental variability into the assessment of threeommastrephid squids (Ommastrephes bartramii in the northwest Pacific, Illex argentinus in the southwest Atlantic and Dosidicus gigas in the southwest Pacific). We assumed that the key environmental variables—suitable sea surface temperature on spawning grounds during the spawning seasons and feeding grounds during the feeding seasons—have effects on the carrying capacity and the instantaneous population growth rate, respectively, in the surplus production model. For each squid stock, the assessment model with environmental variability had the highest fitting accuracy and the lowest mean squared error and coefficient of variation, and the management reference points based on the optimal model were more precautionary. This study advances our understanding of the interactions between the environment and ommastrephid squid population dynamics and can therefore improve the management of these commercially valuable stocks with a short life cycle.Los miembros de la familia Ommastrephidae (potas) son cefalópodos de vida breve y oportunistas ecológicos, estando sus reclutamientos profundamente influidos por el ambiente circundante. Aunque algunos estudios recientes sugirieron que la variabilidad del reclutamiento en varias especies de esta familia podría explicarse parcialmente por la variabilidad ambiental derivada de datos oceanográficos sinópticos, la gestión de los stocks de omastréfidos empleando factores medioambientales es muy poco frecuente. En el presente trabajo, se ha modificado un modelo de producción generalizada incorporando en él factores ambientales con objeto de ofrecer una herramienta para la gestión y manejo de tres pesquerías: la de Ommastrephes bartramii en el Pacífico Noroeste, la Illex argentinus en el Atlántico sudoeste y la de Dosidicus gigas en el Pacífico sudoeste. Se asumió que los factores ambientales clave: una apropiada temperatura superficial en las áreas de puesta durante las épocas de freza y en las áreas de alimentación durante las estaciones de nutrición, tenían efectos sobre la capacidad de carga y el crecimiento instantáneo de la tasa de crecimiento de la población, respectivamente, en el modelo de producción generalizada. Para el stock de cada especie, el modelo de gestión con las variables ambientales mostró el mayor y más preciso ajuste y el menor error cuadrático y coeficiente de variación; además, los puntos de referencia de manejo basados en el modelo optimizado fueron los más precautorios. El presente estudio significa un avance en nuestro conocimiento sobre las interacciones entre el ambiente y la dinámica de las poblaciones de especies de esta familia de cefalópodos, lo que puede mejorar la gestión de estos stocks de especies de vida breve, cuya importancia comercial es muy grande

    Poly[octa­aquadi-μ-phosphato-trinickel(II)]. Corrigendum

    Get PDF
    Corrigendum to Acta Cryst. (2008), E64, m259

    Sini San inhibits breast cancer cell migration and angiogenesis via the HIF 1 /VEGF pathway

    Get PDF
    Purpose: To investigate the effects of Sini San (SNS) on breast cancer (BC), and the mechanism of action.Methods: MDA-MB-231 and SK-BR-3 cells were used as breast cancer cell models. Cell viability, migration, and invasion were determined by CCK-8, Transwell and wound healing assays, respectively. SNS mechanism of action and its anti-cancer effect were investigated by network pharmacological analysis, and further verified by Immunoblot.Results: Sini San inhibited the proliferation of the breast cancer (BC) cells., and also suppressed the migration as well as the invasion of BC cells, and also restrained the angiogenesis of BC cells. In performing the network pharmacological analysis of Sini Powder in the treatment of BC, 337 drugdisease targets were obtained. PPI network was established through String, and GO and KEGG enrichment analysis was performed on the target sites. KEGG analysis showed that genes were enriched in HIF-1 and VEGF pathways.Conclusion: Sini San suppressed cell migration as well as angiogenesis via the HIF-1 /VEGF pathway&nbsp
    corecore