76 research outputs found

    A North-South Contrast of Subsurface Salinity Anomalies in the Northwestern Pacific From 2002 to 2013

    Get PDF
    This paper finds a north‐south contrast of subsurface salinity trend during 2002–2013 in the northwestern Pacific. Both Argo float data and long‐term repeat hydrographic measurements along the 137°E section show that salinity anomalies along the isopycnals of 24.5–25.4 kg/m3 exhibit a pronounced decreasing trend north of 15°N and an increasing trend south of 15°N. We perform a quantitative analysis based on satellite‐derived data and a qualitative analysis that used a lower‐order isopyncal salinity model that represents key balance terms (i.e., evaporation E, precipitation P, and wind forcing advection). Both of the analyses consistently show that the subsurface salinity anomalies in the north and south of 15°N are induced by different physical processes. Fresher surface waters in the northwestern subtropical outcrop region due to an excess freshwater supply (E − P 0) and anomalous ocean circulation associated with the recent accelerated trade winds of the tropical Pacific cause the saltiness of subsurface waters south of 15°N. The results imply that the salinity north‐south contrast may play an important role in changing ocean thermocline structure and upper ocean stratification in the northwestern Pacific.publishedVersio

    Interdecadal variability of the eastward current in the South China Sea associated with the summer Asian monsoon

    Get PDF
    Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 23 (2010): 6115-6123, doi:10.1175/2010JCLI3607.1.Based on the Simple Ocean Data Assimilation (SODA) dataset and three types of Sverdrup streamfunction, an interdecadal variability of the eastward current in the middle South China Sea (SCS) during summer is identified. Both the pattern and strength of the summer Asian monsoon wind stress curl over the SCS contribute to the interdecadal variability of this current. From 1960 to 1979, the monsoon intensified and the zero wind stress curl line shifted southward. Both the core of positive wind stress curl in the northern SCS and the negative curl in the southern SCS moved southward and thus induced a southward shift of both the southern anticyclonic and northern cyclonic gyres, resulting in a southward displacement of the eastward current associated with these two gyres. In the meantime, the southern (northern) SCS anticyclonic (cyclonic) ocean gyre weakened (strengthened) and therefore also induced the southward shift of the eastward current near the intergyre boundary. In contrast, the eastward current shifted northward from 1980 to 1998 because the monsoon relaxed and the zero wind stress curl line shifted northward. After 1998, the eastward jet moved southward again as the zero wind stress curl line shifted southward and the SCS monsoon strengthened. The eastward current identified from the baroclinic streamfunction moved about 1.7° more southward than that from the barotropic streamfunction, indicating that the meridional position of the eastward current is depth dependent.This study was supported by the National BasicResearch Program (Grant 2007CB816003) and the National Natural Science Foundation of China (Grants 40976017, 40730843, and 40876004)

    Representation of the Mean Atlantic Subtropical Cells in CMIP6 Models

    Get PDF
    The Atlantic Subtropical Cells (STCs) consist of poleward Ekman transport in the surface layer, subduction in the subtropics, and equatorward transport in the thermocline layer that largely compensates the surface Ekman divergence and closes the STCs via equatorial upwelling. As a result, the STCs play an important role in connecting the tropical and subtropical Atlantic Ocean, in terms of heat, freshwater, oxygen, and nutrients exchange. However, their representation in state-of-the-art coupled models has not been systematically evaluated. In this study, we investigate the performance of the Coupled Model Intercomparison Project Phase 6 climate models in simulating the Atlantic STCs. Comparing model results with observations, we first present the simulated mean state with respect to ensembles of the key components participating in the STC loop, that is, the meridional Ekman and geostrophic flow across 10°N and 10°S, and the Equatorial Undercurrent (EUC) at 23°W. We find that the model ensemble reveals biases toward weak Southern Hemisphere Ekman transport and interior geostrophic transports, as well as a weak EUC. We then investigate the large inter-model spread of these key components and find that models with strong Ekman divergence between 10°N and 10°S tend to have strong mixed layer and thermocline interior convergence and strong EUC. The inter-model spread of the EUC strength is primarily associated with the intensity of the southeasterly trade winds in the models. Since the trade-wind-induced poleward Ekman transports are regarded as the drivers of the STCs, our results highlight the necessity to improve skills of coupled models to simulate the Southern Hemisphere atmospheric forcing

    What Caused the Significant Increase in Atlantic Ocean Heat Content Since the mid-20th Century?

    Get PDF
    As the upper layer of the world ocean warms gradually during the 20th century, the inter-ocean heat transport from the Indian to Atlantic basin should be enhanced, and the Atlantic Ocean should therefore gain extra heat due to the increased upper ocean temperature of the inflow via the Agulhas leakage. Consistent with this hypothesis, instrumental records indicate that the Atlantic Ocean has warmed substantially more than any other ocean basin since the mid-20th century. A surface-forced global ocean-ice coupled model is used to test this hypothesis and to find that the observed warming trend of the Atlantic Ocean since the 1950s is largely due to an increase in the inter-ocean heat transport from the Indian Ocean. Further analysis reveals that the increased inter-ocean heat transport is not only caused by the increased upper ocean temperature of the inflow but also, and more strongly, by the increased Agulhas Current leakage, which is augmented by the strengthening of the wind stress curl over the South Atlantic and Indian subtropical gyre

    North American Climate in CMIP5 Experiments: Part III: Assessment of Twenty-First-Century Projections

    Get PDF
    In part III of a three-part study on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) models, the authors examine projections of twenty-first-century climate in the representative concentration pathway 8.5 (RCP8.5) emission experiments. This paper summarizes and synthesizes results from several coordinated studies by the authors. Aspects of North American climate change that are examined include changes in continental-scale temperature and the hydrologic cycle, extremes events, and storm tracks, as well as regional manifestations of these climate variables. The authors also examine changes in the eastern North Pacific and North Atlantic tropical cyclone activity and North American intraseasonal to decadal variability, including changes in teleconnections to other regions of the globe. Projected changes are generally consistent with those previously published for CMIP3, although CMIP5 model projections differ importantly from those of CMIP3 in some aspects, including CMIP5 model agreement on increased central California precipitation. The paper also highlights uncertainties and limitations based on current results as priorities for further research. Although many projected changes in North American climate are consistent across CMIP5 models, substantial intermodel disagreement exists in other aspects. Areas of disagreement include projections of changes in snow water equivalent on a regional basis, summer Arctic sea ice extent, the magnitude and sign of regional precipitation changes, extreme heat events across the northern United States, and Atlantic and east Pacific tropical cyclone activity

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
    corecore