98 research outputs found

    Measurement of ϒ production in pp collisions at √s = 2.76 TeV

    Get PDF
    The production of ϒ(1S), ϒ(2S) and ϒ(3S) mesons decaying into the dimuon final state is studied with the LHCb detector using a data sample corresponding to an integrated luminosity of 3.3 pb−1 collected in proton–proton collisions at a centre-of-mass energy of √s = 2.76 TeV. The differential production cross-sections times dimuon branching fractions are measured as functions of the ϒ transverse momentum and rapidity, over the ranges pT < 15 GeV/c and 2.0 < y < 4.5. The total cross-sections in this kinematic region, assuming unpolarised production, are measured to be σ (pp → ϒ(1S)X) × B ϒ(1S)→μ+μ− = 1.111 ± 0.043 ± 0.044 nb, σ (pp → ϒ(2S)X) × B ϒ(2S)→μ+μ− = 0.264 ± 0.023 ± 0.011 nb, σ (pp → ϒ(3S)X) × B ϒ(3S)→μ+μ− = 0.159 ± 0.020 ± 0.007 nb, where the first uncertainty is statistical and the second systematic

    Impact of clinical phenotypes on management and outcomes in European atrial fibrillation patients: a report from the ESC-EHRA EURObservational Research Programme in AF (EORP-AF) General Long-Term Registry

    Get PDF
    Background: Epidemiological studies in atrial fibrillation (AF) illustrate that clinical complexity increase the risk of major adverse outcomes. We aimed to describe European AF patients\u2019 clinical phenotypes and analyse the differential clinical course. Methods: We performed a hierarchical cluster analysis based on Ward\u2019s Method and Squared Euclidean Distance using 22 clinical binary variables, identifying the optimal number of clusters. We investigated differences in clinical management, use of healthcare resources and outcomes in a cohort of European AF patients from a Europe-wide observational registry. Results: A total of 9363 were available for this analysis. We identified three clusters: Cluster 1 (n = 3634; 38.8%) characterized by older patients and prevalent non-cardiac comorbidities; Cluster 2 (n = 2774; 29.6%) characterized by younger patients with low prevalence of comorbidities; Cluster 3 (n = 2955;31.6%) characterized by patients\u2019 prevalent cardiovascular risk factors/comorbidities. Over a mean follow-up of 22.5 months, Cluster 3 had the highest rate of cardiovascular events, all-cause death, and the composite outcome (combining the previous two) compared to Cluster 1 and Cluster 2 (all P <.001). An adjusted Cox regression showed that compared to Cluster 2, Cluster 3 (hazard ratio (HR) 2.87, 95% confidence interval (CI) 2.27\u20133.62; HR 3.42, 95%CI 2.72\u20134.31; HR 2.79, 95%CI 2.32\u20133.35), and Cluster 1 (HR 1.88, 95%CI 1.48\u20132.38; HR 2.50, 95%CI 1.98\u20133.15; HR 2.09, 95%CI 1.74\u20132.51) reported a higher risk for the three outcomes respectively. Conclusions: In European AF patients, three main clusters were identified, differentiated by differential presence of comorbidities. Both non-cardiac and cardiac comorbidities clusters were found to be associated with an increased risk of major adverse outcomes

    Study of the doubly charmed tetraquark T+cc

    Get PDF
    Quantum chromodynamics, the theory of the strong force, describes interactions of coloured quarks and gluons and the formation of hadronic matter. Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. Particles with an alternative quark content are known as exotic states. Here a study is reported of an exotic narrow state in the D0D0π+ mass spectrum just below the D*+D0 mass threshold produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The state is consistent with the ground isoscalar T+cc tetraquark with a quark content of ccu⎯⎯⎯d⎯⎯⎯ and spin-parity quantum numbers JP = 1+. Study of the DD mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell D*+ mesons is consistent with the observed D0π+ mass distribution. To analyse the mass of the resonance and its coupling to the D*D system, a dedicated model is developed under the assumption of an isoscalar axial-vector T+cc state decaying to the D*D channel. Using this model, resonance parameters including the pole position, scattering length, effective range and compositeness are determined to reveal important information about the nature of the T+cc state. In addition, an unexpected dependence of the production rate on track multiplicity is observed

    Anodic Aqueous Electrophoretic Deposition of Titanium Dioxide Using Carboxylic Acids as Dispersing Agents

    Full text link
    The dispersion of anatase phase TiO2 powder in aqueous suspensions was investigated by zeta-potential and agglomerate size analysis. The iso-electric point (IEP) of anatase was determined to be at pH 2.8 using monoprotic acids for pH adjustment. In comparison, it was found that the use of carboxylic acids, citric and oxalic, caused a decrease in zeta-potential through the adsorption of negatively charged groups to the particle surfaces. The use of these reagents was shown to enable effective anodic electrophoretic deposition (EPD) of TiO2 onto graphite substrates at low pH levels with a decreased level of bubble damage in comparison with anodic EPD from basic suspensions. The results obtained demonstrate that the IEP of TiO2 varies with the type of reagent used for pH adjustment. The low pH level of the IEP and the ability to decrease the zeta-potential through the use of carboxylic acids suggest that the anodic EPD of anatase is more readily facilitated than cathodic EPD

    EU-SHARMED, Transcripts of Classroom Interactions, Italian Schools

    Get PDF
    Transcripts of classroom interactions, recorded as part of the EU Erasmus+ project SHARMED (sharmed.eu). Italian Primary and middle schools classroo

    Massively parallel implementation and approaches to simulate quantum dynamics using Krylov subspace techniques

    No full text
    We have developed an application and implemented parallel algorithms in order to provide a computational framework suitable for massively parallel supercomputers to study the unitary dynamics of quantum systems. We use renowned parallel libraries such as PETSc/SLEPc combined with high-performance computing approaches in order to overcome the large memory requirements to be able to study systems whose Hilbert space dimension comprises over 9 billion independent quantum states. Moreover, we provide descriptions of the parallel approach used for the three most important stages of the simulation: handling the Hilbert subspace basis, constructing a matrix representation for a generic Hamiltonian operator and the time evolution of the system by means of the Krylov subspace methods. We employ our setup to study the evolution of quasidisordered and clean many-body systems, focussing on the return probability and related dynamical exponents: the large system sizes accessible provide novel insights into their thermalization properties

    sj-docx-1-wso-10.1177_17474930221109149 – Supplemental material for Efficacy and safety of vitamin-K antagonists and direct oral anticoagulants for stroke prevention in patients with heart failure and sinus rhythm: An updated systematic review and meta-analysis of randomized clinical trials

    No full text
    Supplemental material, sj-docx-1-wso-10.1177_17474930221109149 for Efficacy and safety of vitamin-K antagonists and direct oral anticoagulants for stroke prevention in patients with heart failure and sinus rhythm: An updated systematic review and meta-analysis of randomized clinical trials by Weijia Li, Jiyoung Seo, Damianos G Kokkinidis, Leonidas Palaiodimos, Sanjana Nagraj, Eleni Korompoki, Haralambos Milionis, Wolfram Doehner, Gregory Y. H. Lip and George Ntaios in International Journal of Strok

    Aethozooides uraniae, a new deep-sea genus and species of solitary bryozoan from the Mediterranean Sea, with a revision of the Aethozoidae

    No full text
    Bryozoa is a phylum of about 6000 extant species that are almost exclusively colonial. Few species of the uncalcified Gymnolaemata, the ctenostomes, however, show solitary forms that essentially consist of single zooids. Recently, several specimens of a solitary ctenostome bryozoan were encountered for the first time in the deep Mediterranean Sea, at the edge of an anoxic brine lake. Differences in size, tentacle number, and in the variability of cystid appendages set these specimens apart from all other known solitary species. Moreover, additional morphological autapomorphic traits suggest the erection of a novel genus to allocate the new species. Consequently, the new taxon Aethozooides gen. nov. is proposed in virtue of the general resemblance of the Mediterranean specimens with those of the genus Aethozoon Hayward, 1978. Aethozooides uraniae gen. et sp. nov. shows significant variability in the number and location of cystid appendages that range from two on the basal side to one or two on the zooid mid-peristomial position and/or, rarely, on the terminal frontal side. The polypide possesses a distinct, long tentacle crown always carrying 10 tentacles. The prominent retractor muscle consists of numerous bundles that, in contrast to other known gymnolaemates, attach not only to the lophophoral base but also to various parts of the gut. Distally, the aperture shows a set of four apertural muscles including four parieto-vaginal bands. Reviewing the state and diversity of solitary ctenostomes, we propose a revision of the family Aethozoidae to include the genera Franzenella d’Hondt, 1983, Aethozoon, Aethozooides, and two species currently affiliated to the genus Franzenella (F. monniotae and F. radicans) for which we erected the new taxon Solella gen. nov.© The Author(s) 201

    RNAi-directed knockdown in the cnidarian fish blood parasite Sphaerospora molnari

    No full text
    RNA interference (RNAi) is an effective approach to suppress gene expression and monitor gene regulation. Despite its wide application, its use is limited in certain taxonomic groups, including cnidarians. Myxozoans are a unique group of cnidarian parasites that diverged from their free-living ancestors about 600 million years ago, with several species causing acute disease in farmed and wild fish populations. In this pioneering study we successfully applied RNAi in blood stages of the myxozoan Sphaerospora molnari, combining a dsRNA soaking approach, real-time PCR, confocal microscopy, and Western blotting. For proof of concept, we knocked down two unusual actins, one of which is known to play a critical role in S. molnari cell motility. We observed intracellular uptake of dsRNA after 30 min and accumulation in all cells of the typical myxozoan cell-in-cell structure. We successfully knocked down actin in S. molnari in vitro, with transient inhibition for 48 h. We observed the disruption of the cytoskeletal network within the primary cell and loss of the characteristic rotational cell motility. This RNAi workflow could significantly advance functional research within the Myxozoa, offering new prospects for investigating therapeutic targets and facilitating drug discovery against economically important fish parasites
    corecore