173 research outputs found

    EVOLUTION OF PROTEIN COMPLEXES IN BACTERIAL SPECIES

    Get PDF
    Protein complexes are composed of two or more associated polypeptide chains that may have different functions. Protein complexes play a critical role for all processes in life and are considered as highly conserved in evolution. In previous studies, protein complexes from E. coli or Mycoplasma pneumoniae have been characterized experimentally, revealing that a typical bacterial cell has on the order of 500 protein complexes. Using gene homology (orthology), these experimentally-observed complexes can be used to predict protein complexes across many species of bacteria. Surprisingly, the majority of protein complexes is not conserved, demonstrating an unexpected evolutionary flexibility. The current research investigates the evolution of 174 well-characterized (“reference”) protein complexes from E. coli that have three or more subunits. More specifically, we study the evolutionary flexibility by using evidence and patterns of the presence or absence of the subunits across a range of 894 bacterial species and to interpret whether the evolution is due to the loss or gain of a subunit in the protein complex. The purpose of this study is to determine how the presence or absence of a subunit affects the protein complexes’ functionality. We discuss the functional changes observed in a protein complex due to the presence or absence of a particular subunit by using a statistical approach and by confirming its significance.https://scholarscompass.vcu.edu/uresposters/1253/thumbnail.jp

    Protein Complexes in Bacteria

    Get PDF
    Large-scale analyses of protein complexes have recently become available for Escherichia coli and Mycoplasma pneumoniae, yielding 443 and 116 heteromultimeric soluble protein complexes, respectively. We have coupled the results of these mass spectrometrycharacterized protein complexes with the 285 “gold standard” protein complexes identified by EcoCyc. A comparison with databases of gene orthology, conservation, and essentiality identified proteins conserved or lost in complexes of other species. For instance, of 285 “gold standard” protein complexes in E. coli, less than 10% are fully conserved among a set of 7 distantly-related bacterial “model” species. Complex conservation follows one of three models: well-conserved complexes, complexes with a conserved core, and complexes with partial conservation but no conserved core. Expanding the comparison to 894 distinct bacterial genomes illustrates fractional conservation and the limits of co-conservation among components of protein complexes: just 14 out of 285 model protein complexes are perfectly conserved across 95% of the genomes used, yet we predict more than 180 may be partially conserved across at least half of the genomes. No clear relationship between gene essentiality and protein complex conservation is observed, as even poorly conserved complexes contain a significant number of essential proteins. Finally, we identify 183 complexes containing well-conserved components and uncharacterized proteins which will be interesting targets for future experimental studies

    The FF domains of yeast U1 snRNP protein Prp40 mediate interactions with Luc7 and Snu71

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The FF domain is conserved across all eukaryotes and usually acts as an adaptor module in RNA metabolism and transcription. <it>Saccharomyces cerevisiae </it>encodes two FF domain proteins, Prp40, a component of the U1 snRNP, and Ypr152c, a protein of unknown function. The structure of Prp40, its relationship to other proteins within the U1 snRNP, and its precise function remain little understood.</p> <p>Results</p> <p>Here we have investigated the essentiality and interaction properties of the FF domains of yeast Prp40. We show that the C-terminal two FF domains of Prp40 are dispensable. Deletion of additional FF domains is lethal. The first FF domain of Prp40 binds to U1 protein Luc7 in yeast two-hybrid and GST pulldown experiments. FF domains 2 and 3 bind to Snu71, another known U1 protein. Peptide array screens identified binding sites for FF1-2 within Snu71 (NDVHY) and for FF1 within Luc7 (ϕ[FHL] × [KR] × [GHL] with ϕ being a hydrophobic amino acid).</p> <p>Conclusion</p> <p>Prp40, Luc7, and Snu71 appear to form a subcomplex within the yeast U1snRNP. Our data suggests that the N-terminal FF domains are critical for these interactions. Crystallization of Prp40, Luc7, and Snu71 have failed so far but co-crystallization of pairs or the whole tri-complex may facilitate crystallographic and further functional analysis.</p

    Bacterial protein meta-interactomes predict cross-species interactions and protein function

    Get PDF
    Background Protein-protein interactions (PPIs) can offer compelling evidence for protein function, especially when viewed in the context of proteome-wide interactomes. Bacteria have been popular subjects of interactome studies: more than six different bacterial species have been the subjects of comprehensive interactome studies while several more have had substantial segments of their proteomes screened for interactions. The protein interactomes of several bacterial species have been completed, including several from prominent human pathogens. The availability of interactome data has brought challenges, as these large data sets are difficult to compare across species, limiting their usefulness for broad studies of microbial genetics and evolution. Results In this study, we use more than 52,000 unique protein-protein interactions (PPIs) across 349 different bacterial species and strains to determine their conservation across data sets and taxonomic groups. When proteins are collapsed into orthologous groups (OGs) the resulting meta-interactome still includes more than 43,000 interactions, about 14,000 of which involve proteins of unknown function. While conserved interactions provide support for protein function in their respective species data, we found only 429 PPIs (~1% of the available data) conserved in two or more species, rendering any cross-species interactome comparison immediately useful. The meta-interactome serves as a model for predicting interactions, protein functions, and even full interactome sizes for species with limited to no experimentally observed PPI, including Bacillus subtilis and Salmonella enterica which are predicted to have up to 18,000 and 31,000 PPIs, respectively. Conclusions In the course of this work, we have assembled cross-species interactome comparisons that will allow interactomics researchers to anticipate the structures of yet-unexplored microbial interactomes and to focus on well-conserved yet uncharacterized interactors for further study. Such conserved interactions should provide evidence for important but yet-uncharacterized aspects of bacterial physiology and may provide targets for anti-microbial therapies

    The protein interaction map of bacteriophage lambda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacteriophage lambda is a model phage for most other dsDNA phages and has been studied for over 60 years. Although it is probably the best-characterized phage there are still about 20 poorly understood open reading frames in its 48-kb genome. For a complete understanding we need to know all interactions among its proteins. We have manually curated the lambda literature and compiled a total of 33 interactions that have been found among lambda proteins. We set out to find out how many protein-protein interactions remain to be found in this phage.</p> <p>Results</p> <p>In order to map lambda's interactions, we have cloned 68 out of 73 lambda open reading frames (the "ORFeome") into Gateway vectors and systematically tested all proteins for interactions using exhaustive array-based yeast two-hybrid screens. These screens identified 97 interactions. We found 16 out of 30 previously published interactions (53%). We have also found at least 18 new plausible interactions among functionally related proteins. All previously found and new interactions are combined into structural and network models of phage lambda.</p> <p>Conclusions</p> <p>Phage lambda serves as a benchmark for future studies of protein interactions among phage, viruses in general, or large protein assemblies. We conclude that we could not find all the known interactions because they require chaperones, post-translational modifications, or multiple proteins for their interactions. The lambda protein network connects 12 proteins of unknown function with well characterized proteins, which should shed light on the functional associations of these uncharacterized proteins.</p

    Mental Health First Aid Training for VCU Faculty and Staff

    Get PDF
    Mental Health First Aid (MHFA), an international training program, teaches participants to notice and support individuals experiencing a mental health or substance use issue and connects them to appropriate resources. While resources exist for students, this project aims to implement MHFA as a professional development opportunity for VCU faculty and staff. A successful pilot training held this summer demonstrates the need and desire for training in the VCU community. Evidence shows mental health issues lead to absenteeism, employee turnover and increased healthcare costs, costing organizations billions in recruitment that may have been avoided. Through state partnerships, trainers are available to offer this one-day program multiple times a year
    • …
    corecore