313 research outputs found

    Modeling Human Ad Hoc Coordination

    Full text link
    Whether in groups of humans or groups of computer agents, collaboration is most effective between individuals who have the ability to coordinate on a joint strategy for collective action. However, in general a rational actor will only intend to coordinate if that actor believes the other group members have the same intention. This circular dependence makes rational coordination difficult in uncertain environments if communication between actors is unreliable and no prior agreements have been made. An important normative question with regard to coordination in these ad hoc settings is therefore how one can come to believe that other actors will coordinate, and with regard to systems involving humans, an important empirical question is how humans arrive at these expectations. We introduce an exact algorithm for computing the infinitely recursive hierarchy of graded beliefs required for rational coordination in uncertain environments, and we introduce a novel mechanism for multiagent coordination that uses it. Our algorithm is valid in any environment with a finite state space, and extensions to certain countably infinite state spaces are likely possible. We test our mechanism for multiagent coordination as a model for human decisions in a simple coordination game using existing experimental data. We then explore via simulations whether modeling humans in this way may improve human-agent collaboration.Comment: AAAI 201

    Focal Plane Geometry Characterization of the Kepler Mission

    Get PDF
    The Kepler Mission focal plane contains 42 charge-coupled device (CCD) photodetectors. Each CCD is composed of 2.2 million square pixels, 27 micrometers on a side, arranged in a grid of 2,200 columns by 1,044 rows. The science goals of the Kepler Mission require that the position of each CCD be determined with an accuracy of 0.1 pixels, corresponding to 2.7 micrometers or 0.4 seconds of arc, a level which is not achievable through pre-flight metrology. We describe a technique for determining the CCD positioning using images of the Kepler field of view (FOV) obtained in flight. The technique uses the fitted centroid row and column positions of 400 pre-selected stars on each CCD to obtain empirical polynomials which relate sky coordinates (right ascension and declination) to chip coordinates (row and column). The polynomials are in turn evaluated to produce constraints for a nonlinear model fit which directly determines the model parameters describing the location and orientation of each CCD. The focal plane geometry characterization algorithm is itself embedded in an iterative process which determines the focal plane geometry and the Pixel Response Function for each CCD in a self-consistent manner. In addition to the fully automated calculation, a person-in-the-loop implementation was developed to allow an initial determination of the geometry in the event of large misalignments, achieving a much looser capture tolerance for more modest accuracy and reduced automation

    Modeling human intuitions about liquid flow with particle-based simulation

    Full text link
    Humans can easily describe, imagine, and, crucially, predict a wide variety of behaviors of liquids--splashing, squirting, gushing, sloshing, soaking, dripping, draining, trickling, pooling, and pouring--despite tremendous variability in their material and dynamical properties. Here we propose and test a computational model of how people perceive and predict these liquid dynamics, based on coarse approximate simulations of fluids as collections of interacting particles. Our model is analogous to a "game engine in the head", drawing on techniques for interactive simulations (as in video games) that optimize for efficiency and natural appearance rather than physical accuracy. In two behavioral experiments, we found that the model accurately captured people's predictions about how liquids flow among complex solid obstacles, and was significantly better than two alternatives based on simple heuristics and deep neural networks. Our model was also able to explain how people's predictions varied as a function of the liquids' properties (e.g., viscosity and stickiness). Together, the model and empirical results extend the recent proposal that human physical scene understanding for the dynamics of rigid, solid objects can be supported by approximate probabilistic simulation, to the more complex and unexplored domain of fluid dynamics.Comment: Under review at PLOS Computational Biolog

    Modeling human ad hoc coordination

    Get PDF
    Whether in groups of humans or groups of computer agents, collaboration is most effective between individuals who have the ability to coordinate on a joint strategy for collective action. However, in general a rational actor will only intend to coordinate if that actor believes the other group members have the same intention. This circular dependence makes rational coordination difficult in uncertain environments if communication between actors is unreliable and no prior agreements have been made. An important normative question with regard to coordination in these ad hoc settings is therefore how one can come to believe that other actors will coordinate, and with regard to systems involving humans, an important empirical question is how humans arrive at these expectations. We introduce an exact algorithm for computing the infinitely recursive hierarchy of graded beliefs required for rational coordination in uncertain environments, and we introduce a novel mechanism for multiagent coordination that uses it. Our algorithm is valid in any environment with a finite state space, and extensions to certain countably infinite state spaces are likely possible. We test our mechanism for multiagent coordination as a model for human decisions in a simple coordination game using existing experimental data. We then explore via simulations whether modeling humans in this way may improve human-Agent collaboration

    A 3D Face Modelling Approach for Pose-Invariant Face Recognition in a Human-Robot Environment

    Full text link
    Face analysis techniques have become a crucial component of human-machine interaction in the fields of assistive and humanoid robotics. However, the variations in head-pose that arise naturally in these environments are still a great challenge. In this paper, we present a real-time capable 3D face modelling framework for 2D in-the-wild images that is applicable for robotics. The fitting of the 3D Morphable Model is based exclusively on automatically detected landmarks. After fitting, the face can be corrected in pose and transformed back to a frontal 2D representation that is more suitable for face recognition. We conduct face recognition experiments with non-frontal images from the MUCT database and uncontrolled, in the wild images from the PaSC database, the most challenging face recognition database to date, showing an improved performance. Finally, we present our SCITOS G5 robot system, which incorporates our framework as a means of image pre-processing for face analysis

    The Kepler Pixel Response Function

    Full text link
    Kepler seeks to detect sequences of transits of Earth-size exoplanets orbiting Solar-like stars. Such transit signals are on the order of 100 ppm. The high photometric precision demanded by Kepler requires detailed knowledge of how the Kepler pixels respond to starlight during a nominal observation. This information is provided by the Kepler pixel response function (PRF), defined as the composite of Kepler's optical point spread function, integrated spacecraft pointing jitter during a nominal cadence and other systematic effects. To provide sub-pixel resolution, the PRF is represented as a piecewise-continuous polynomial on a sub-pixel mesh. This continuous representation allows the prediction of a star's flux value on any pixel given the star's pixel position. The advantages and difficulties of this polynomial representation are discussed, including characterization of spatial variation in the PRF and the smoothing of discontinuities between sub-pixel polynomial patches. On-orbit super-resolution measurements of the PRF across the Kepler field of view are described. Two uses of the PRF are presented: the selection of pixels for each star that maximizes the photometric signal to noise ratio for that star, and PRF-fitted centroids which provide robust and accurate stellar positions on the CCD, primarily used for attitude and plate scale tracking. Good knowledge of the PRF has been a critical component for the successful collection of high-precision photometry by Kepler.Comment: 10 pages, 5 figures, accepted by ApJ Letters. Version accepted for publication

    Reimagining the research-practice relationship: policy recommendations for informatics-enabled evidence-generation across the US health system

    Get PDF
    Abstract. The widespread adoption and use of electronic health records and their use to enable learning health systems (LHS) holds great promise to accelerate both evidence-generating medicine (EGM) and evidence-based medicine (EBM), thereby enabling a LHS. In 2016, AMIA convened its 10th annual Policy Invitational to discuss issues key to facilitating the EGM-EBM paradigm at points-of-care (nodes), across organizations (networks), and to ensure viability of this model at scale (sustainability). In this article, we synthesize discussions from the conference and supplements those deliberations with relevant context to inform ongoing policy development. Specifically, we explore and suggest public policies needed to facilitate EGM-EBM activities on a national scale, particularly those policies that can enable and improve clinical and health services research at the point-of-care, accelerate biomedical discovery, and facilitate translation of findings to improve the health of individuals and population

    A Morphable Face Albedo Model

    Get PDF
    • …
    corecore