46 research outputs found

    Role of Glycated Proteins in the Diagnosis and Management of Diabetes: Research Gaps and Future Directions

    Get PDF
    Blood oligosaccharides are attached to many proteins after translation, forming glycoproteins. Glycosylation refers to an enzyme-mediated modification that alters protein function, for example, their life span or their interactions with other proteins (1). By contrast, glycation refers to a monosaccharide (usually glucose) attaching nonenzymatically to the amino group of a protein. Glycated hemoglobin is formed by the condensation of glucose with select amino acid residues, commonly lysine, in hemoglobin to form an unstable Schiff base (aldimine, pre-HbA1c) (Fig. 1). The Schiff base may dissociate or may undergo an Amadori rearrangement to form a stable ketoamine. Figure 1 Formation of glycated protein. A reversible interaction between a primary amino group (depicted as NH2) of a protein and the carbonyl group of d-glucose yields a labile intermediate, called a Schiff base. This can undergo a slow and spontaneous Amadori rearrangement to form a stable ketoamine. HbA1c is formed if glucose attaches to the N-terminal valine of the β-chain of hemoglobin. If the glucose attaches to proteins in the plasma, fructosamine or glycated albumin results. RBC, red blood cell. Glycated hemoglobin, particularly HbA1c, has for decades been widely incorporated into the management (and, more recently, the diagnosis) of patients with diabetes. An important attribute is that glycation occurs continuously over the lifetime of the protein, so the concentration of the glycated protein reflects the average blood glucose value over a period of time. This contrasts with the measurement of blood glucose, which reveals the glucose concentration at the instant blood is sampled and which is acutely altered by multiple factors such as hormones, illness, food ingestion, and exercise (2). While HbA1c is by far the most extensively used—and studied—glycated protein (2–4), other glycated proteins that have been evaluated in clinical studies include fructosamine, glycated albumin, and

    Retinopathy predicts progression of fasting plasma glucose: An Early Diabetes Intervention Program (EDIP) analysis

    Get PDF
    Background Retinopathy is increasingly recognized in prediabetic populations, and may herald increased risk of metabolic worsening. The Early Diabetes Intervention Program (EDIP) evaluated worsening of glycemia in screen-detected Type 2 diabetes, following participants for up to 5 years. Here we have evaluated whether the presence of retinopathy at the time of detection of diabetes was associated with accelerated progression of glycemia. Methods We prospectively studied 194 participants from EDIP with available baseline retinal photographs. Retinopathy was determined at baseline using 7-field fundus photography and defined as an Early Treatment of Diabetic Retinopathy Study Scale grading score of ≥ 20. Results At baseline, 12% of participants had classical retinal lesions indicating retinopathy. In univariate Cox proportional hazard analysis, the presence of retinopathy at baseline was associated with a doubled risk of progression of fasting plasma glucose (HR 2.02; 95% CI 1.05–3.89). The retinopathy effect was robust to individual adjustment for age and glucose, the most potent determinants of progression in EDIP. Conclusion Retinopathy was associated with increased risk of progression of fasting plasma glucose among adults with screen-detected, early diabetes. Early detection of retinopathy may help individualize more aggressive therapy to prevent progressive metabolic worsening in early diabetes

    The association of depression and diabetes across methods, measures, and study contexts

    Get PDF
    Abstract Background Empirical research has revealed a positive relationship between type 2 diabetes mellitus and depression, but questions remain regarding timing of depression measurement, types of instruments used to measure depression, and whether “depression” is defined as clinical depression or depressive symptoms. The present study sought to establish the robustness of the depression-diabetes relationship across depression definition, severity of depressive symptoms, recent depression, and lifetime depression in a nationally representative dataset and a large rural dataset. Methods The present examination, conducted between 2014 and 2015, used two large secondary datasets: the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2008 (n = 3072) and the Arthritis, Coping, and Emotion Study (ACES) from 2002 to 2006 (n = 2300). Depressive symptoms in NHANES were measured using the Patient Health Questionnaire 9-item survey (PHQ-9). ACES used the Center for Epidemiologic Studies—Depression Scale (CES-D) to measure depressive symptoms and the Composite International Diagnostic Interview (CIDI) to measure diagnosable depression. Diabetes was modelled as the dichotomous outcome variable (presence vs. absence of diabetes). Logistic regression was used for all analyses, most of which were cross-sectional. Analyses controlled for age, ethnicity, sex, education, and body mass index, and NHANES analyses used sample weights to account for the complex survey design. Additional analyses using NHANES data focused on the addition of health behavior variables and inflammation to the model. Results NHANES. Every one-point increase in depressive symptoms was associated with a 5% increase in odds of having diabetes [OR: 1.05 (CI: 1.03, 1.07)]. These findings persisted after controlling for health behaviors and inflammation. ACES. For every one-point increase in depressive symptom score, odds of having diabetes increased by 2% [OR: 1.02 (CI: 1.01, 1.03)]. Recent (past 12 months) depression [OR: 1.49, (CI: 1.03, 2.13)] and lifetime depression [OR: 1.40 (CI: 1.09, 1.81)] were also significantly associated with having diabetes. Conclusions This study provides evidence for the robustness of the relationship between depression or depressive symptoms and diabetes and demonstrates that depression occurring over the lifetime can be associated with diabetes just as robustly as that which occurs more proximal to the time of study measurement

    Home use of a bihormonal bionic pancreas versus insulin pump therapy in adults with type 1 diabetes: a multicentre randomised crossover trial

    Get PDF
    The safety and effectiveness of a continuous, day-and-night automated glycaemic control system using insulin and glucagon has not been shown in a free-living, home-use setting. We aimed to assess whether bihormonal bionic pancreas initialised only with body mass can safely reduce mean glycaemia and hypoglycaemia in adults with type 1 diabetes who were living at home and participating in their normal daily routines without restrictions on diet or physical activity

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049
    corecore