132 research outputs found

    Taxonomic revision and phylogeny of the Ophiocoma brevipes group (Echinodermata, Ophiuroidea) : with description of a new subgenus (Breviturma) and a new species

    Get PDF
    The taxonomy of the genus Ophiocoma was last revised by Devaney in 1970. Recent discoveries of new species and re-instatement of previously synonymized names suggest that we still do not fully understand the species limits in this genus. A recent biodiversity survey of the SW Indian Ocean shallow reefs strongly suggested an unrecognised species in the genus, closely related to O. brevipes/O. dentata. This study examined both the molecular phylogenetic relationships and the morphological characteristics of several species in the genus in order to characterise the unrecognised species. The focal species clusters with O. brevipes, O. dentata, O. doederleini within a monophyletic clade supported by molecular data for the first time. The name Breviturma subgen. nov. is proposed for this clade, previously known as brevipes group. Type material of nominal species that have been synonymized with O. dentata was examined and re-assessed. Ophiocoma marmorata proved not conspecific with O. dentata. A rarely used character, dorsal disc granule density, was tested and showed differences between the examined species at similar sizes. In combination with colour pattern, disc granule density, arm spine sequence and maximum disc size, the new species was delimited morphologically and described as Ophiocoma krohi sp. nov

    Deepest known novel species of the genus Ophiuroglypha Hertz, 1927 (Echinodermata: Ophiuroidea) from the central rift zone, Philippine Sea

    Get PDF
    Nethupul, Hasitha, Stöhr, Sabine, Zhang, Haibin (2023): Deepest known novel species of the genus Ophiuroglypha Hertz, 1927 (Echinodermata: Ophiuroidea) from the central rift zone, Philippine Sea. European Journal of Taxonomy 891: 167-185, DOI: https://doi.org/10.5852/ejt.2023.891.2281, URL: https://europeanjournaloftaxonomy.eu/index.php/ejt/article/download/2281/983

    Ofiuroideos del Cretácico Inferior de Patagonia: primer registro fósil articulado para el Mesozoico de América del Sur

    Get PDF
    The first articulated remains of ophiuroids for the Mesozoic of South America are described from the Lower Cretaceous of Neuquén Basin, Argentina. The taxonomic analysis allows the assignment of the material described herein to the extinct genus Ophiopetra. The specimens belong to a new species, but considering the poor preservation, a new name is not introduced, as it would be based on an incomplete diagnosis. Certain characteristics (e.g., the diameter of the disc, the width/height ratio of the vertebrae) suggest that these ophiuroids are paedomorphic specimens. In light of the latest classification of the Ophiuroidea, and new insights on the spine articulation microstructure of Ophiopetra lithographica presented herein, a transfer of Ophiopetra to the family Ophionereididae within the order Amphilepidida is proposed. This material expands the palaeogeographic record of this genus, since it represents the first remains of Ophiopetra described in the Southern Hemisphere. It is also the first Cretaceous record of the genus worldwide.Fil: Fernández, Diana Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias Geológicas; ArgentinaFil: Giachetti, Luciana María. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias Geológicas; ArgentinaFil: Stöhr, Sabine. Swedish Museum of Natural History; SueciaFil: Thuy, Ben. Natural History Museum Luxembourg; LuxemburgoFil: Perez, Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”; ArgentinaFil: Comerio, Marcos. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; ArgentinaFil: Pazos, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentin

    Global Diversity of Brittle Stars (Echinodermata: Ophiuroidea)

    Get PDF
    This review presents a comprehensive overview of the current status regarding the global diversity of the echinoderm class Ophiuroidea, focussing on taxonomy and distribution patterns, with brief introduction to their anatomy, biology, phylogeny, and palaeontological history. A glossary of terms is provided. Species names and taxonomic decisions have been extracted from the literature and compiled in The World Ophiuroidea Database, part of the World Register of Marine Species (WoRMS). Ophiuroidea, with 2064 known species, are the largest class of Echinodermata. A table presents 16 families with numbers of genera and species. The largest are Amphiuridae (467), Ophiuridae (344 species) and Ophiacanthidae (319 species). A biogeographic analysis for all world oceans and all accepted species was performed, based on published distribution records. Approximately similar numbers of species were recorded from the shelf (n = 1313) and bathyal depth strata (1297). The Indo-Pacific region had the highest species richness overall (825 species) and at all depths. Adjacent regions were also relatively species rich, including the North Pacific (398), South Pacific (355) and Indian (316) due to the presence of many Indo-Pacific species that partially extended into these regions. A secondary region of enhanced species richness was found in the West Atlantic (335). Regions of relatively low species richness include the Arctic (73 species), East Atlantic (118), South America (124) and Antarctic (126)

    HIV-1 DNA predicts disease progression and post-treatment virological control

    Get PDF
    In HIV-1 infection, a population of latently infected cells facilitates viral persistence despite antiretroviral therapy (ART). With the aim of identifying individuals in whom ART might induce a period of viraemic control on stopping therapy, we hypothesised that quantification of the pool of latently infected cells in primary HIV-1 infection (PHI) would predict clinical progression and viral replication following ART. We measured HIV-1 DNA in a highly characterised randomised population of individuals with PHI. We explored associations between HIV-1 DNA and immunological and virological markers of clinical progression, including viral rebound in those interrupting therapy. In multivariable analyses, HIV-1 DNA was more predictive of disease progression than plasma viral load and, at treatment interruption, predicted time to plasma virus rebound. HIV-1 DNA may help identify individuals who could safely interrupt ART in future HIV-1 eradication trials

    Megafaunal Community Structure of Andaman Seamounts Including the Back-Arc Basin – A Quantitative Exploration from the Indian Ocean

    Get PDF
    Species rich benthic communities have been reported from some seamounts, predominantly from the Atlantic and Pacific Oceans, but the fauna and habitats on Indian Ocean seamounts are still poorly known. This study focuses on two seamounts, a submarine volcano (cratered seamount – CSM) and a non-volcano (SM2) in the Andaman Back–arc Basin (ABB), and the basin itself. The main purpose was to explore and generate regional biodiversity data from summit and flank (upper slope) of the Andaman seamounts for comparison with other seamounts worldwide. We also investigated how substratum types affect the megafaunal community structure along the ABB. Underwater video recordings from TeleVision guided Gripper (TVG) lowerings were used to describe the benthic community structure along the ABB and both seamounts. We found 13 varieties of substratum in the study area. The CSM has hard substratum, such as boulders and cobbles, whereas the SM2 was dominated by cobbles and fine sediment. The highest abundance of megabenthic communities was recorded on the flank of the CSM. Species richness and diversity were higher at the flank of the CSM than other are of ABB. Non-metric multi-dimensional scaling (nMDS) analysis of substratum types showed 50% similarity between the flanks of both seamounts, because both sites have a component of cobbles mixed with fine sediments in their substratum. Further, nMDS of faunal abundance revealed two groups, each restricted to one of the seamounts, suggesting faunal distinctness between them. The sessile fauna corals and poriferans showed a significant positive relation with cobbles and fine sediments substratum, while the mobile categories echinoderms and arthropods showed a significant positive relation with fine sediments only
    corecore