802 research outputs found

    Flexible Stereo: Constrained, Non-rigid, Wide-baseline Stereo Vision for Fixed-wing Aerial Platforms

    Full text link
    This paper proposes a computationally efficient method to estimate the time-varying relative pose between two visual-inertial sensor rigs mounted on the flexible wings of a fixed-wing unmanned aerial vehicle (UAV). The estimated relative poses are used to generate highly accurate depth maps in real-time and can be employed for obstacle avoidance in low-altitude flights or landing maneuvers. The approach is structured as follows: Initially, a wing model is identified by fitting a probability density function to measured deviations from the nominal relative baseline transformation. At run-time, the prior knowledge about the wing model is fused in an Extended Kalman filter~(EKF) together with relative pose measurements obtained from solving a relative perspective N-point problem (PNP), and the linear accelerations and angular velocities measured by the two inertial measurement units (IMU) which are rigidly attached to the cameras. Results obtained from extensive synthetic experiments demonstrate that our proposed framework is able to estimate highly accurate baseline transformations and depth maps.Comment: Accepted for publication in IEEE International Conference on Robotics and Automation (ICRA), 2018, Brisban

    Safe Local Exploration for Replanning in Cluttered Unknown Environments for Micro-Aerial Vehicles

    Full text link
    In order to enable Micro-Aerial Vehicles (MAVs) to assist in complex, unknown, unstructured environments, they must be able to navigate with guaranteed safety, even when faced with a cluttered environment they have no prior knowledge of. While trajectory optimization-based local planners have been shown to perform well in these cases, prior work either does not address how to deal with local minima in the optimization problem, or solves it by using an optimistic global planner. We present a conservative trajectory optimization-based local planner, coupled with a local exploration strategy that selects intermediate goals. We perform extensive simulations to show that this system performs better than the standard approach of using an optimistic global planner, and also outperforms doing a single exploration step when the local planner is stuck. The method is validated through experiments in a variety of highly cluttered environments including a dense forest. These experiments show the complete system running in real time fully onboard an MAV, mapping and replanning at 4 Hz.Comment: Accepted to ICRA 2018 and RA-L 201

    R&D Venture: proposition of a technology transfer concept for breakthrough technologies with R&D cooperation: A case study in the energy sector

    Get PDF
    At times when the market demands strong active innovation, large industrial corporations with established R&D organizations benefit from screening and developing breakthrough innovation. The ability of established organizations to absorb for future technologies is a key to successfully recognize, explore and capture breakthrough innovations. R&D Venturing is a practical way of bringing about technology transfer and exploration of future technologies through R&D cooperation, which is described in this paper by a multiple case study in the energy sector. Existing literature has been reviewed and an R&D Venturing concept will be suggested with a number of propositions for implementation. The results of the case study strongly support that different perspectives of the concept from industry, academia and the ventures themselves have to be carefully understood. Based on the results of the case study, a conceptual framework and propositions for a successful implementation have been derived. A critical discussion of the R&D Venturing concept shows the need for further empirical investigatio

    Nonlinear Model Predictive Control for Multi-Micro Aerial Vehicle Robust Collision Avoidance

    Full text link
    Multiple multirotor Micro Aerial Vehicles sharing the same airspace require a reliable and robust collision avoidance technique. In this paper we address the problem of multi-MAV reactive collision avoidance. A model-based controller is employed to achieve simultaneously reference trajectory tracking and collision avoidance. Moreover, we also account for the uncertainty of the state estimator and the other agents position and velocity uncertainties to achieve a higher degree of robustness. The proposed approach is decentralized, does not require collision-free reference trajectory and accounts for the full MAV dynamics. We validated our approach in simulation and experimentally.Comment: Video available on: https://www.youtube.com/watch?v=Ot76i9p2ZZo&t=40

    A New Method and Toolbox for Easily Calibrating Omnidirectional Cameras

    Get PDF
    In this paper, we focus on calibration of central omnidirectional cameras, both dioptric and catadioptric. We describe our novel camera model and algorithm and provide a practical Matlab Toolbox, which implements the proposed method. Our method relies on the use of a planar grid that is shown by the user at different unknown positions and orientations. The user is only asked to click on the corner points of the images of this grid. Then, calibration is quickly and automatically performed. In contrast with previous approaches, we do not use any specific model of the omnidirectional sensor. Conversely, we assume that the imaging function can be described by a polynomial approximation whose coefficients are estimated by solving a linear least squares minimization problem followed by a non-linear refinement. The performance of the approach is shown through several calibration experiments on both simulated and real data. The proposed algorithm is implemented as a Matlab Toolbox, which allows any inexpert user to easily calibrate his own camera. The toolbox is completely Open Source and is freely downloadable from the author's Web page
    • …
    corecore