229 research outputs found

    Systematic Scoring Balloon Lesion Preparation for Drug-Coated Balloon Angioplasty in Clinical Routine: Results of the PASSWORD Observational Study

    Get PDF
    INTRODUCTION: Scoring balloon angioplasty (SBA) for lumen gain prior to stent implantations or drug-coated balloon angioplasty (DCB) is considered an essential interventional tool for lesion preparation. Recent evidence indicates that SBA may play a pivotal role in enhancing the angiographic and clinical outcomes of DCB angioplasty. METHODS: We studied the systematic use of SBA with a low profile, non-slip element device prior to DCB angioplasty in an unselected, non-randomized patient population. This prospective, all-comers study enrolled patients with de novo lesions as well as in-stent restenotic lesions in bare metal stents (BMS-ISR) and drug-eluting stents (DES-ISR). The primary endpoint was the target lesion failure (TLF) rate at 9 months (ClinicalTrials.gov Identifier NCT02554292). RESULTS: A total of 481 patients (496 lesions) were recruited to treat de novo lesions (78.4%, 377), BMS-ISR (4.0%, 19), and DES-ISR (17.6%, 85). Overall risk factors were acute coronary syndrome (ACS, 20.6%, 99), diabetes mellitus (46.8%, 225), and atrial fibrillation (8.5%, 41). Average lesion lengths were 16.7 +/- 10.4 mm in the de novo group, and 20.1 +/- 8.9 mm (BMS-ISR) and 16.2 +/- 9.8 mm (DES-ISR) in the ISR groups. Scoring balloon diameters were 2.43 +/- 0.41 mm (de novo), 2.71 +/- 0.31 mm (BMS-ISR), and 2.92 +/- 0.42 mm (DES-ISR) whereas DCB diameters were 2.60 +/- 0.39 mm (de novo), 3.00 +/- 0.35 mm (BMS-ISR), and 3.10 +/- 0.43 mm (DES-ISR), respectively. The overall accumulated TLF rate of 3.0% (14/463) was driven by significantly higher target lesion revascularization rates in the BMS-ISR (5.3%, 1/19) and the DES-ISR group (6.0%, 5/84). In de novo lesions, the TLF rate was 1.1% (4/360) without differences between calcified and non-calcified lesions (p = 0.158) and small vs. large reference vessel diameters with a cutoff value of 3.0 mm (p = 0.901). CONCLUSIONS: The routine use of a non-slip element scoring balloon catheter to prepare lesions suitable for drug-coated balloon angioplasty is associated with high procedural success rates and low TLF rates in de novo lesions

    A Search for Neutrinos from Decaying Dark Matter in Galaxy Clusters and Galaxies with IceCube

    Get PDF
    The observed dark matter abundance in the Universe can be explained with non-thermal, heavy dark matter models. In order for dark matter to still be present today, its lifetime has to far exceed the age of the Universe. In these scenarios, dark matter decay can produce highly energetic neutrinos, along with other Standard Model particles. To date, the IceCube Neutrino Observatory is the world’s largest neutrino telescope, located at the geographic South Pole. In 2013, the IceCube collaboration reported the first observation of high-energy astrophysical neutrinos. Since then, IceCube has collected a large amount of astrophysical neutrino data with energies up to tens of PeV, allowing us to probe the heavy dark matter models using neutrinos. We search the IceCube data for neutrinos from decaying dark matter in galaxy clusters and galaxies. The targeted dark matter masses range from 10 TeV to 10 PeV. In this contribution, we present the method and sensitivities of the analysis

    Performance of the D-Egg Optical Sensor for the IceCube Upgrade

    Get PDF
    New optical sensors called the "D-Egg" have been developed for cost-effective instrumentation for the IceCube Upgrade. With two 8-inch high QE photomultipliers, they offer increased effective photocathode area while retaining as much of the successful IceCube Digital Optical Module (DOM) design as possible. Mass production of D-Eggs has started in 2020. By the end of 2021, there will be 310 D-Eggs produced with 288 deployed in the IceCube Upgrade. The D-Egg readout system uses advanced technologies in electronics and computing power. Each of the two PMT signals is digitized using ultra-low-power 14-bit ADCs with a sampling frequency of 250-MSPS, enabling seamless and lossless event recording from single-photon signals to signals exceeding 200pe within 10ns, as well as flexible event triggering. In this paper, we report the single photon detection performance as well as the multiple photon recording capability of D-Eggs from the mass production line which have been evaluated with the built-in DAQ system

    Testing Hadronic Interaction Models with Cosmic Ray Measurements at the IceCube Neutrino Observatory

    Get PDF
    The IceCube Neutrino Observatory provides the opportunity to perform unique measurements of cosmic-ray air showers with its combination of a surface array and a deep detector. Electromagnetic particles and low-energy muons (∼GeV) are detected by IceTop, while a bundle of high-energy muons (>~400 GeV) can be measured in coincidence in IceCube. Predictions of air-shower observables based on simulations show a strong dependence on the choice of the high-energy hadronic interaction model. By reconstructing different composition-dependent observables, one can provide strong tests of hadronic interaction models, as these measurements should be consistent with one another. In this work, we present an analysis of air-shower data between 2.5 and 80 PeV, comparing the composition interpretation of measurements of the surface muon density, the slope of the IceTop lateral distribution function, and the energy loss of the muon bundle, using the models Sibyll 2.1, QGSJet-II.04 and EPOS-LHC. We observe inconsistencies in all models under consideration, suggesting they do not give an adequate description of experimental data. The results furthermore imply a significant uncertainty in the determination of the cosmic-ray mass composition through indirect measurements

    Density of GeV muons in air showers measured with IceTop

    Get PDF
    We present a measurement of the density of GeV muons in near-vertical air showers using three years of data recorded by the IceTop array at the South Pole. Depending on the shower size, the muon densities have been measured at lateral distances between 200 and 1000 m. From these lateral distributions, we derive the muon densities as functions of energy at reference distances of 600 and 800 m for primary energies between 2.5 and 40 PeV and between 9 and 120 PeV, respectively. The muon densities are determined using, as a baseline, the hadronic interaction model Sibyll 2.1 together with various composition models. The measurements are consistent with the predicted muon densities within these baseline interaction and composition models. The measured muon densities have also been compared to simulations using the post-LHC models EPOS-LHC and QGSJet-II.04. The result of this comparison is that the post-LHC models together with any given composition model yield higher muon densities than observed. This is in contrast to the observations above 1 EeV where all model simulations yield for any mass composition lower muon densities than the measured ones. The post-LHC models in general feature higher muon densities so that the agreement with experimental data at the highest energies is improved but the muon densities are not correct in the energy range between 2.5 and about 100 PeV

    Indirect search for dark matter in the Galactic Centre with IceCube

    Get PDF
    Even though there are strong astrophysical and cosmological indications to support the existence of dark matter, its exact nature remains unknown. We expect dark matter to produce standard model particles when annihilating or decaying, assuming that it is composed of Weakly Interacting Massive Particles (WIMPs). These standard model particles could in turn yield neutrinos that can be detected by the IceCube neutrino telescope. The Milky Way is expected to be permeated by a dark matter halo with an increased density towards its centre. This halo is expected to yield the strongest dark matter annihilation signal at Earth coming from any celestial object, making it an ideal target for indirect searches. In this contribution, we present the sensitivities of an indirect search for dark matter in the Galactic Centre using IceCube data. This low energy dark matter search allows us to cover dark matter masses ranging from 5 GeV to 1 TeV. The sensitivities obtained for this analysis show considerable improvements over previous IceCube results in the considered energy range

    Density of GeV Muons Measured with IceTop

    Get PDF
    We present a measurement of the density of GeV muons in near-vertical air showers using three years of data recorded by the IceTop array at the South Pole. We derive the muon densities as functions of energy at reference distances of 600 m and 800 m for primary energies between 2.5 PeV and 40 PeV and between 9 PeV and 120 PeV, respectively, at an atmospheric depth of about 690g/cm2^2. The measurements are consistent with the predicted muon densities obtained from Sibyll 2.1 assuming any physically reasonable cosmic ray flux model. However, comparison to the post-LHC models QGSJet-II.04 and EPOS-LHC shows that the post-LHC models yield a higher muon density than predicted by Sibyll 2.1 and are in tension with the experimental data for air shower energies between 2.5 PeV and 120 PeV

    Design, performance, and analysis of a measurement of optical properties of antarctic ice below 400 nm

    Get PDF
    The IceCube Neutrino Observatory, located at the geographic South Pole, is the world\u27s largest neutrino telescope, instrumenting 1 km3^3 of Antarctic ice with 5160 photosensors to detect Cherenkov light. For the IceCube Upgrade, to be deployed during the 2022-23 polar field season, and the enlarged detector IceCube-Gen2 several new optical sensor designs are under development. One of these optical sensors, the Wavelength-shifting Optical Module (WOM), uses wavelength-shifting and light-guiding techniques to measure Cherenkov photons in the UV range from 250 nm to 380 nm. In order to understand the potential gains from this new technology, a measurement of the scattering and absorption lengths of UV light was performed in the SPICEcore borehole at the South Pole during the winter seasons of 2018/2019 and 2019/2020. For this purpose, a calibration device with a UV light source and a detector using the wavelength shifting technology was developed. We present the design of the developed calibration device, its performance during the measurement campaigns, and the comparison of data to a Monte Carlo simulation

    Design, performance, and analysis of a measurement of optical properties of antarctic ice below 400 nm

    Get PDF
    The IceCube Neutrino Observatory, located at the geographic South Pole, is the world\u27s largest neutrino telescope, instrumenting 1 km3^3 of Antarctic ice with 5160 photosensors to detect Cherenkov light. For the IceCube Upgrade, to be deployed during the 2022-23 polar field season, and the enlarged detector IceCube-Gen2 several new optical sensor designs are under development. One of these optical sensors, the Wavelength-shifting Optical Module (WOM), uses wavelength-shifting and light-guiding techniques to measure Cherenkov photons in the UV range from 250 nm to 380 nm. In order to understand the potential gains from this new technology, a measurement of the scattering and absorption lengths of UV light was performed in the SPICEcore borehole at the South Pole during the winter seasons of 2018/2019 and 2019/2020. For this purpose, a calibration device with a UV light source and a detector using the wavelength shifting technology was developed. We present the design of the developed calibration device, its performance during the measurement campaigns, and the comparison of data to a Monte Carlo simulation
    corecore