2,769 research outputs found

    The global field of multi-family offices: An institutionalist perspective

    Get PDF
    We apply the notion of the organisational field to internationally operating multi-family offices. These organisations specialise on the preservation of enterprising and geographically dispersed families’ fortunes. They provide their services across generations and countries. Based on secondary data of Bloomberg’s Top 50 Family Offices, we show that they constitute a global organisational field that comprises two clusters of homogeneity. Clients may decide between two different configurations of activities, depending on their preferences regarding asset management, resource management, family management, and service architecture. The findings also reveal that multi-family offices make relatively similar value propositions all over the world. The distinctiveness of the clusters within the field is not driven by the embeddedness of the multi-family offices in different national environments or their various degrees of international experience. Rather, it is weakly affected by two out of four possible value propositions, namely the exclusiveness and the transparency of services

    Removal of ecotoxicity of 17α-ethinylestradiol using TAML/peroxide water treatment

    Get PDF
    17α -ethinylestradiol (EE2), a synthetic oestrogen in oral contraceptives, is one of many pharmaceuticals found in inland waterways worldwide as a result of human consumption and excretion into wastewater treatment systems. At low parts per trillion (ppt), EE2 induces feminisation of male fish, diminishing reproductive success and causing fish population collapse. Intended water quality standards for EE2 set a much needed global precedent. Ozone and activated carbon provide effective wastewater treatments, but their energy intensities and capital/operating costs are formidable barriers to adoption. Here we describe the technical and environmental performance of a fast- developing contender for mitigation of EE2 contamination of wastewater based upon smallmolecule, full-functional peroxidase enzyme replicas called “TAML activators”. From neutral to basic pH, TAML activators with H2O2 efficiently degrade EE2 in pure lab water, municipal effluents and EE2-spiked synthetic urine. TAML/H2O2 treatment curtails estrogenicity in vitro and substantially diminishes fish feminization in vivo. Our results provide a starting point for a future process in which tens of thousands of tonnes of wastewater could be treated per kilogram of catalyst. We suggest TAML/H2O2 is a worthy candidate for exploration as an environmentally compatible, versatile, method for removing EE2 and other pharmaceuticals from municipal wastewaters.Heinz Endowments, the Swiss National Science Foundation, the Steinbrenner Institute for a Steinbrenner Doctoral Fellowship. NMR instrumentation at CMU was partially supported by NSF (CHE-0130903 and CHE-1039870)

    Lower rates of cardiovascular events and mortality associated with liraglutide use in patients treated with basal insulin: A DEVOTE subanalysis (DEVOTE 10)

    Get PDF
    AIM: To compare the associations between concomitant liraglutide use versus no liraglutide use and the risk of major adverse cardiovascular events (MACE) and all-cause mortality among patients receiving basal insulin (either insulin degludec [degludec] or insulin glargine 100 units/mL [glargine U100]) in the Trial Comparing Cardiovascular Safety of Insulin Degludec versus Insulin Glargine in Patients with Type 2 Diabetes at High Risk of Cardiovascular Events (DEVOTE). MATERIALS AND METHODS: Patients with type 2 diabetes and high cardiovascular risk were randomized 1:1 to degludec or glargine U100. Hazard ratios for MACE/mortality were calculated using a Cox regression model adjusted for treatment and time-varying liraglutide use at any time during the trial, without interaction. Sensitivity analyses were adjusted for baseline covariates including, but not limited to, age, sex, smoking and prior cardiovascular disease. RESULTS: At baseline, 436/7637 (5.7%) patients were treated with liraglutide; after baseline, 187/7637 (2.4%) started and 210/7637 (2.7%) stopped liraglutide. Mean liraglutide exposure from randomization was 530.2 days. Liraglutide use versus no liraglutide use was associated with significantly lower hazard rates for MACE [0.62 (0.41; 0.92)95%CI ] and all-cause mortality [0.50 (0.29; 0.88)95%CI ]. There was no significant difference in the rate of severe hypoglycaemia with versus without liraglutide use. Multiple sensitivity analyses yielded similar results. CONCLUSIONS: Use of liraglutide was associated with significantly lower risk of MACE and death in patients with type 2 diabetes and high cardiovascular risk using basal insulin

    Metabolism of ticagrelor in patients with acute coronary syndromes.

    Get PDF
    © The Author(s) 2018Ticagrelor is a state-of-the-art antiplatelet agent used for the treatment of patients with acute coronary syndromes (ACS). Unlike remaining oral P2Y12 receptor inhibitors ticagrelor does not require metabolic activation to exert its antiplatelet action. Still, ticagrelor is extensively metabolized by hepatic CYP3A enzymes, and AR-C124910XX is its only active metabolite. A post hoc analysis of patient-level (n = 117) pharmacokinetic data pooled from two prospective studies was performed to identify clinical characteristics affecting the degree of AR-C124910XX formation during the first six hours after 180 mg ticagrelor loading dose in the setting of ACS. Both linear and multiple regression analyses indicated that ACS patients presenting with ST-elevation myocardial infarction or suffering from diabetes mellitus are more likely to have decreased rate of ticagrelor metabolism during the acute phase of ACS. Administration of morphine during ACS was found to negatively influence transformation of ticagrelor into AR-C124910XX when assessed with linear regression analysis, but not with multiple regression analysis. On the other hand, smoking appears to increase the degree of ticagrelor transformation in ACS patients. Mechanisms underlying our findings and their clinical significance warrant further research.Peer reviewedFinal Published versio

    Protein dynamics and conformational selection in bidirectional signal transduction

    Get PDF
    Protein conformational dynamics simultaneously allow promiscuity and specificity in binding. The multiple conformations of the free EphA4 ligand-binding domain observed in two new EphA4 crystal structures provide a unique insight into the conformational dynamics of EphA4 and its signaling pathways. The heterogeneous ensemble and loop dynamics explain how the EphA4 receptor is able to bind multiple A- and B-ephrin ligands and small molecules via conformational selection, which helps to fine-tune cellular signal response in both receptor and ligand cells

    Day-to-day fasting glycaemic variability in DEVOTE: associations with severe hypoglycaemia and cardiovascular outcomes (DEVOTE 2)

    Get PDF
    Aims/hypothesis The Trial Comparing Cardiovascular Safety of Insulin Degludec vs Insulin Glargine in Patients with Type 2 Diabetes at High Risk of Cardiovascular Events (DEVOTE) was a double-blind, randomised, event-driven, treat-to-target prospective trial comparing the cardiovascular safety of insulin degludec with that of insulin glargine U100 (100 units/ml) in patients with type 2 diabetes at high risk of cardiovascular events. This paper reports a secondary analysis investigating associations of day-to-day fasting glycaemic variability (pre-breakfast self-measured blood glucose [SMBG]) with severe hypoglycaemia and cardiovascular outcomes. Methods In DEVOTE, patients with type 2 diabetes were randomised to receive insulin degludec or insulin glargine U100 once daily. The primary outcome was the first occurrence of an adjudicated major adverse cardiovascular event (MACE). Adjudicated severe hypoglycaemia was the pre-specified secondary outcome. In this article, day-to-day fasting glycaemic variability was based on the standard deviation of the pre-breakfast SMBG measurements. The variability measure was calculated as follows. Each month, only the three pre-breakfast SMBG measurements recorded before contact with the site were used to determine a day-to-day fasting glycaemic variability measure for each patient. For each patient, the variance of the three log-transformed pre-breakfast SMBG measurements each month was determined. The standard deviation was determined as the square root of the mean of these monthly variances and was defined as day-to-day fasting glycaemic variability. The associations between day-to-day fasting glycaemic variability and severe hypoglycaemia, MACE and all-cause mortality were analysed for the pooled trial population with Cox proportional hazards models. Several sensitivity analyses were conducted, including adjustments for baseline characteristics and most recent HbA1c. Results Day-to-day fasting glycaemic variability was significantly associated with severe hypoglycaemia (HR 4.11, 95% CI 3.15, 5.35), MACE (HR 1.36, 95% CI 1.12, 1.65) and all-cause mortality (HR 1.58, 95% CI 1.23, 2.03) before adjustments. The increased risks of severe hypoglycaemia, MACE and all-cause mortality translate into 2.7-, 1.2- and 1.4-fold risk, respectively, when a patient’s day-to-day fasting glycaemic variability measure is doubled. The significant relationships of day-to-day fasting glycaemic variability with severe hypoglycaemia and all-cause mortality were maintained after adjustments. However, the significant association with MACE was not maintained following adjustment for baseline characteristics with either baseline HbA1c (HR 1.19, 95% CI 0.96, 1.47) or the most recent HbA1c measurement throughout the trial (HR 1.21, 95% CI 0.98, 1.49). Conclusions/interpretation Higher day-to-day fasting glycaemic variability is associated with increased risks of severe hypoglycaemia and all-cause mortality

    Ultrastructural and functional fate of recycled vesicles in hippocampal synapses

    Get PDF
    Efficient recycling of synaptic vesicles is thought to be critical for sustained information transfer at central terminals. However, the specific contribution that retrieved vesicles make to future transmission events remains unclear. Here we exploit fluorescence and time-stamped electron microscopy to track the functional and positional fate of vesicles endocytosed after readily releasable pool (RRP) stimulation in rat hippocampal synapses. We show that most vesicles are recovered near the active zone but subsequently take up random positions in the cluster, without preferential bias for future use. These vesicles non-selectively queue, advancing towards the release site with further stimulation in an actin-dependent manner. Nonetheless, the small subset of vesicles retrieved recently in the stimulus train persist nearer the active zone and exhibit more privileged use in the next RRP. Our findings reveal heterogeneity in vesicle fate based on nanoscale position and timing rules, providing new insights into the origins of future pool constitution

    Uncovering the Dynamics of Cardiac Systems Using Stochastic Pacing and Frequency Domain Analyses

    Get PDF
    Alternans of cardiac action potential duration (APD) is a well-known arrhythmogenic mechanism which results from dynamical instabilities. The propensity to alternans is classically investigated by examining APD restitution and by deriving APD restitution slopes as predictive markers. However, experiments have shown that such markers are not always accurate for the prediction of alternans. Using a mathematical ventricular cell model known to exhibit unstable dynamics of both membrane potential and Ca2+ cycling, we demonstrate that an accurate marker can be obtained by pacing at cycle lengths (CLs) varying randomly around a basic CL (BCL) and by evaluating the transfer function between the time series of CLs and APDs using an autoregressive-moving-average (ARMA) model. The first pole of this transfer function corresponds to the eigenvalue (λalt) of the dominant eigenmode of the cardiac system, which predicts that alternans occurs when λalt≤−1. For different BCLs, control values of λalt were obtained using eigenmode analysis and compared to the first pole of the transfer function estimated using ARMA model fitting in simulations of random pacing protocols. In all versions of the cell model, this pole provided an accurate estimation of λalt. Furthermore, during slow ramp decreases of BCL or simulated drug application, this approach predicted the onset of alternans by extrapolating the time course of the estimated λalt. In conclusion, stochastic pacing and ARMA model identification represents a novel approach to predict alternans without making any assumptions about its ionic mechanisms. It should therefore be applicable experimentally for any type of myocardial cell

    The effects of the neurotoxin DSP4 on spatial learning and memory in Wistar rats

    Get PDF
    The aim of the present study was to investigate the effect of DSP4-induced noradrenaline depletion on learning and memory in a spatial memory paradigm (holeboard). Since Harro et al. Brain Res 976:209–216 (2003) have demonstrated that short-term effects of DSP4 administration include both noradrenaline depletion and changes in dopamine and its metabolites—with the latter vanishing within 4 weeks after the neurotoxic lesion—the behavioural effects observed immediately after DSP4 administration cannot solely be related to noradrenaline. In the present study, spatial learning, reference memory and working memory were therefore assessed 5–10 weeks after DSP4 administration. Our results suggest that the administration of DSP4 did not lead to changes in spatial learning and memory when behavioural assessment was performed after a minimum of 5 weeks following DSP4. This lack of changes in spatial behaviour suggests that the role of noradrenaline regarding these functions may be limited. Future studies will therefore have to take into account the time-course of neurotransmitter alterations and behavioural changes following DSP4 administration

    Constraints on Nucleon Decay via "Invisible" Modes from the Sudbury Neutrino Observatory

    Get PDF
    Data from the Sudbury Neutrino Observatory have been used to constrain the lifetime for nucleon decay to ``invisible'' modes, such as n -> 3 nu. The analysis was based on a search for gamma-rays from the de-excitation of the residual nucleus that would result from the disappearance of either a proton or neutron from O16. A limit of tau_inv > 2 x 10^{29} years is obtained at 90% confidence for either neutron or proton decay modes. This is about an order of magnitude more stringent than previous constraints on invisible proton decay modes and 400 times more stringent than similar neutron modes.Comment: Update includes missing efficiency factor (limits change by factor of 2) Submitted to Physical Review Letter
    corecore