1,878 research outputs found

    Path-integral representation for a stochastic sandpile

    Full text link
    We introduce an operator description for a stochastic sandpile model with a conserved particle density, and develop a path-integral representation for its evolution. The resulting (exact) expression for the effective action highlights certain interesting features of the model, for example, that it is nominally massless, and that the dynamics is via cooperative diffusion. Using the path-integral formalism, we construct a diagrammatic perturbation theory, yielding a series expansion for the activity density in powers of the time.Comment: 22 pages, 6 figure

    Series expansion for a stochastic sandpile

    Full text link
    Using operator algebra, we extend the series for the activity density in a one-dimensional stochastic sandpile with fixed particle density p, the first terms of which were obtained via perturbation theory [R. Dickman and R. Vidigal, J. Phys. A35, 7269 (2002)]. The expansion is in powers of the time; the coefficients are polynomials in p. We devise an algorithm for evaluating expectations of operator products and extend the series to O(t^{16}). Constructing Pade approximants to a suitably transformed series, we obtain predictions for the activity that compare well against simulations, in the supercritical regime.Comment: Extended series and improved analysi

    Asymptotic behavior of the order parameter in a stochastic sandpile

    Full text link
    We derive the first four terms in a series for the order paramater (the stationary activity density rho) in the supercritical regime of a one-dimensional stochastic sandpile; in the two-dimensional case the first three terms are reported. We reorganize the pertubation theory for the model, recently derived using a path-integral formalism [R. Dickman e R. Vidigal, J. Phys. A 35, 7269 (2002)], to obtain an expansion for stationary properties. Since the process has a strictly conserved particle density p, the Fourier mode N^{-1} psi_{k=0} -> p, when the number of sites N -> infinity, and so is not a random variable. Isolating this mode, we obtain a new effective action leading to an expansion for rho in the parameter kappa = 1/(1+4p). This requires enumeration and numerical evaluation of more than 200 000 diagrams, for which task we develop a computational algorithm. Predictions derived from this series are in good accord with simulation results. We also discuss the nature of correlation functions and one-site reduced densities in the small-kappa (large-p) limit.Comment: 18 pages, 5 figure

    Diffusive epidemic process: theory and simulation

    Full text link
    We study the continuous absorbing-state phase transition in the one-dimensional diffusive epidemic process via mean-field theory and Monte Carlo simulation. In this model, particles of two species (A and B) hop on a lattice and undergo reactions B -> A and A + B -> 2B; the total particle number is conserved. We formulate the model as a continuous-time Markov process described by a master equation. A phase transition between the (absorbing) B-free state and an active state is observed as the parameters (reaction and diffusion rates, and total particle density) are varied. Mean-field theory reveals a surprising, nonmonotonic dependence of the critical recovery rate on the diffusion rate of B particles. A computational realization of the process that is faithful to the transition rates defining the model is devised, allowing for direct comparison with theory. Using the quasi-stationary simulation method we determine the order parameter and the survival time in systems of up to 4000 sites. Due to strong finite-size effects, the results converge only for large system sizes. We find no evidence for a discontinuous transition. Our results are consistent with the existence of three distinct universality classes, depending on whether A particles diffusive more rapidly, less rapidly, or at the same rate as B particles.Comment: 19 pages, 5 figure

    Scaling behavior of the conserved transfer threshold process

    Full text link
    We analyze numerically the critical behavior of an absorbing phase transition in the conserved transfer threshold process. We determined the steady state scaling behavior of the order parameter as a function of both, the control parameter and an external field, conjugated to the order parameter. The external field is realized as a spontaneous creation of active particles which drives the system away from criticality. The obtained results yields that the conserved transfers threshold process belongs to the universality class of absorbing phase transitions in a conserved field.Comment: 6 pages, 8 figures, accepted for publication in Phys. Rev.

    Contact process on a Voronoi triangulation

    Full text link
    We study the continuous absorbing-state phase transition in the contact process on the Voronoi-Delaunay lattice. The Voronoi construction is a natural way to introduce quenched coordination disorder in lattice models. We simulate the disordered system using the quasistationary simulation method and determine its critical exponents and moment ratios. Our results suggest that the critical behavior of the disordered system is unchanged with respect to that on a regular lattice, i.e., that of directed percolation

    Activated Random Walkers: Facts, Conjectures and Challenges

    Get PDF
    We study a particle system with hopping (random walk) dynamics on the integer lattice Zd\mathbb Z^d. The particles can exist in two states, active or inactive (sleeping); only the former can hop. The dynamics conserves the number of particles; there is no limit on the number of particles at a given site. Isolated active particles fall asleep at rate λ>0\lambda > 0, and then remain asleep until joined by another particle at the same site. The state in which all particles are inactive is absorbing. Whether activity continues at long times depends on the relation between the particle density ζ\zeta and the sleeping rate λ\lambda. We discuss the general case, and then, for the one-dimensional totally asymmetric case, study the phase transition between an active phase (for sufficiently large particle densities and/or small λ\lambda) and an absorbing one. We also present arguments regarding the asymptotic mean hopping velocity in the active phase, the rate of fixation in the absorbing phase, and survival of the infinite system at criticality. Using mean-field theory and Monte Carlo simulation, we locate the phase boundary. The phase transition appears to be continuous in both the symmetric and asymmetric versions of the process, but the critical behavior is very different. The former case is characterized by simple integer or rational values for critical exponents (β=1\beta = 1, for example), and the phase diagram is in accord with the prediction of mean-field theory. We present evidence that the symmetric version belongs to the universality class of conserved stochastic sandpiles, also known as conserved directed percolation. Simulations also reveal an interesting transient phenomenon of damped oscillations in the activity density

    N-Site approximations and CAM analysis for a stochastic sandpile

    Full text link
    I develop n-site cluster approximations for a stochastic sandpile in one dimension. A height restriction is imposed to limit the number of states: each site can harbor at most two particles (height z_i \leq 2). (This yields a considerable simplification over the unrestricted case, in which the number of states per site is unbounded.) On the basis of results for n \leq 11 sites, I estimate the critical particle density as zeta_c = 0.930(1), in good agreement with simulations. A coherent anomaly analysis yields estimates for the order parameter exponent [beta = 0.41(1)] and the relaxation time exponent (nu_|| \simeq 2.5).Comment: 12 pages, 7 figure

    On the absorbing-state phase transition in the one-dimensional triplet creation model

    Full text link
    We study the lattice reaction diffusion model 3A -> 4A, A -> 0 (``triplet creation") using numerical simulations and n-site approximations. The simulation results provide evidence of a discontinuous phase transition at high diffusion rates. In this regime the order parameter appears to be a discontinuous function of the creation rate; no evidence of a stable interface between active and absorbing phases is found. Based on an effective mapping to a modified compact directed percolation process, shall nevertheless argue that the transition is continuous, despite the seemingly discontinuous phase transition suggested by studies of finite systems.Comment: 23 pages, 11 figure

    Flow properties of driven-diffusive lattice gases: theory and computer simulation

    Get PDF
    We develop n-cluster mean-field theories (0 < n < 5) for calculating the flow properties of the non-equilibrium steady-states of the Katz-Lebowitz-Spohn model of the driven diffusive lattice gas, with attractive and repulsive inter-particle interactions, in both one and two dimensions for arbitrary particle densities, temperature as well as the driving field. We compare our theoretical results with the corresponding numerical data we have obtained from the computer simulations to demonstrate the level of accuracy of our theoretical predictions. We also compare our results with those for some other prototype models, notably particle-hopping models of vehicular traffic, to demonstrate the novel qualitative features we have observed in the Katz-Lebowitz-Spohn model, emphasizing, in particular, the consequences of repulsive inter-particle interactions.Comment: 12 RevTex page
    corecore