1,305 research outputs found

    On the core-halo distribution of dark matter in galaxies

    Full text link
    We investigate the distribution of dark matter in galaxies by solving the equations of equilibrium of a self-gravitating system of massive fermions (`inos') at selected temperatures and degeneracy parameters within general relativity. Our most general solutions show, as a function of the radius, a segregation of three physical regimes: 1) an inner core of almost constant density governed by degenerate quantum statistics; 2) an intermediate region with a sharply decreasing density distribution followed by an extended plateau, implying quantum corrections; 3) an asymptotic, ρ∝r−2\rho\propto r^{-2} classical Boltzmann regime fulfilling, as an eigenvalue problem, a fixed value of the flat rotation curves. This eigenvalue problem determines, for each value of the central degeneracy parameter, the mass of the ino as well as the radius and mass of the inner quantum core. Consequences of this alternative approach to the central and halo regions of galaxies, ranging from dwarf to big spirals, for SgrA*, as well as for the existing estimates of the ino mass, are outlined.Comment: 8 pages, 5 figures. Accepted for publication by MNRA

    Strong-field gravitational-wave emission in Schwarzschild and Kerr geometries: some general considerations

    Full text link
    We show how the concurrent implementation of the exact solutions of the Einstein equations, of the equations of motion of the test particles, and of the relativistic estimate of the emission of gravitational waves from test particles, can establish a priori constraints on the possible phenomena occurring in Nature. Two examples of test particles starting at infinite distance or from finite distance in a circular orbit around a Kerr black hole are considered: the first leads to a well defined gravitational wave burst the second to a smooth merging into the black hole. This analysis is necessary for the study of the waveforms in merging binary systems.Comment: Resubmitted to PRD after Referee repor

    Novel constraints on fermionic dark matter from galactic observables I: The Milky Way

    Get PDF
    We have recently introduced a new model for the distribution of dark matter (DM) in galaxies based on a self-gravitating system of massive fermions at finite temperatures, the Ruffini-Arg\"uelles-Rueda (RAR) model. We show that this model, for fermion masses in the keV range, explains the DM halo of the Galaxy and predicts the existence of a denser quantum core at the center. We demonstrate here that the introduction of a cutoff in the fermion phase-space distribution, necessary to account for the finite Galaxy size, defines a new solution with a central core which represents an alternative to the black hole (BH) scenario for SgrA*. For a fermion mass in the range mc2=48mc^2 = 48 -- 345345~keV, the DM halo distribution is in agreement with the Milky Way rotation curve data, while harbors a dense quantum core of about 4×106M⊙4\times10^6 M_\odot within the S2-star pericenter.Comment: 11 pages, 5 figures. Published in Physics of the Dark Univers

    Circular motion of neutral test particles in Reissner-Nordstr\"om spacetime

    Full text link
    We investigate the motion of neutral test particles in the gravitational field of a mass MM with charge QQ described by the Reissner-Nordstr\"om (RN) spacetime. We focus on the study of circular stable and unstable orbits around configurations describing either black holes or naked singularities. We show that at the classical radius, defined as Q2/MQ^2/M, there exist orbits with zero angular momentum due to the presence of repulsive gravity. The analysis of the stability of circular orbits indicates that black holes are characterized by a continuous region of stability. In the case of naked singularities, the region of stability can split into two non-connected regions inside which test particles move along stable circular orbits.Comment: 23 pages, 22 figures. To be published Phys. Rev.

    A Model for Short Gamma-Ray Bursts: Heated Neutron Stars in Close Binary Systems

    Full text link
    In this paper we present a model for the short (< second) population of gamma-ray bursts (GRBs). In this model heated neutron stars in a close binary system near their last stable orbit emit neutrinos at large luminosities (~ 10^53 ergs/sec). A fraction of these neutrinos will annihilate to form an electron-positron pair plasma wind which will, in turn, expand and recombine to photons which make the gamma-ray burst. We study neutrino annihilation and show that a substantial fraction (~ 50%) of energy deposited comes from inter-star neutrinos, where each member of the neutrino pair originates from each neutron star. Thus, in addition to the annihilation of neutrinos blowing off of a single star, we have a new source of baryon free energy that is deposited between the stars. To model the pair plasma wind between stars, we do three-dimensional relativistic numerical hydrodynamic calculations. Preliminary results are also presented of new, fully general relativistic calculations of gravitationally attracting stars falling from infinity with no angular momentum. These simulations exhibit a compression effect.Comment: 3 pages, 3 postscript figs (2 color), to appear in "Gamma-Ray Burst and Afterglow Astronomy 2001", Woods Hole; 5-9 Nov, 200

    The role of self-interacting right-handed neutrinos in galactic structure

    Get PDF
    It has been shown previously that the DM in galactic halos can be explained by a self-gravitating system of massive keV fermions (`inos') in thermodynamic equilibrium, and predicted the existence of a denser quantum core of inos towards the center of galaxies. In this article we show that the inclusion of self-interactions among the inos, modeled within a relativistic mean-field-theory approach, allows the quantum core to become massive and compact enough to explain the dynamics of the S-cluster stars closest to the Milky Way's galactic center. The application of this model to other galaxies such as large elliptical harboring massive central dark objects of ∌109M⊙\sim 10^9 M_\odot is also investigated. We identify these interacting inos with sterile right-handed neutrinos pertaining to minimal extensions of the Standard Model, and calculate the corresponding total cross-section σ\sigma within an electroweak-like formalism to be compared with other observationally inferred cross-section estimates. The coincidence of an ino mass range of few tens of keV derived here only from the galactic structure, with the range obtained independently from other astrophysical and cosmological constraints, points towards an important role of the right-handed neutrinos in the cosmic structure.Comment: 33 pages, 9 figures, version to appear in JCA

    On the structure of the burst and afterglow of Gamma-Ray Bursts I: the radial approximation

    Get PDF
    We have proposed three paradigms for the theoretical interpretation of gamma-ray bursts (GRBs). (1) The relative space-time transformation (RSTT) paradigm emphasizes how the knowledge of the entire world-line of the source from the moment of gravitational collapse is a necessary condition to interpret GRB data. (2) The interpretation of the burst structure (IBS) paradigm differentiates in all GRBs between an injector phase and a beam-target phase. (3) The GRB-supernova time sequence (GSTS) paradigm introduces the concept of induced supernova explosion in the supernovae-GRB association. These three paradigms are illustrated using our theory based on the vacuum polarization process occurring around an electromagnetic black hole (EMBH theory) and using GRB 991216 as a prototype. We illustrate the five fundamental eras of the EMBH theory: the self acceleration of the e+e−e^+e^- pair-electromagnetic plasma (PEM pulse), its interaction with the baryonic remnant of the progenitor star (PEMB pulse). We then study the approach of the PEMB pulse to transparency, the emission of the proper GRB (P-GRB) and its relation to the ``short GRBs''. Finally the three different regimes of the afterglow are described within the fully radiative and radial approximations. The best fit of the theory leads to an unequivocal identification of the ``long GRBs'' as extended emission occurring at the afterglow peak (E-APE). The relative intensities, the time separation and the hardness ratio of the P-GRB and the E-APE are used as distinctive observational test of the EMBH theory and the excellent agreement between our theoretical predictions and the observations are documented. The afterglow power-law indexes in the EMBH theory are compared and contrasted with the ones in the literature, and no beaming process is found for GRB 991216.Comment: 96 pages, 40 figures, to appear on Int. Journ. Mod. Phys.
    • 

    corecore