7 research outputs found

    Indian Ocean Dipole influence on Indian summer monsoon and ENSO: A review

    No full text
    The Indian Ocean Dipole (IOD) is one of the dominant modes of variability of the tropical Indian Ocean and it has been suggested to have a crucial role in the teleconnection between the Indian summer monsoon and El Niño Southern Oscillation (ENSO). The main ideas at the base of the influence of the IOD on the ENSO-monsoon teleconnection include the possibility that it may strengthen summer rainfall over India, as well as the opposite, and also that it may produce a remote forcing on ENSO itself. In the future, the IOD is projected to increase in frequency and amplitude with mean conditions mimicking the characteristics of its positive phase. Still, state-of-the-art global climate models have large biases in representing the mean state and variability of both IOD and ISM, with potential consequences for their future projections. However, the characteristics of the IOD and ENSO are likely to continue in a future warmer world, with persistence of their linkage

    Performance assessment of three convective parameterization schemes in WRF for downscaling summer rainfall over South Africa

    Get PDF
    Austral summer rainfall over the period 1991/1992 to 2010/2011 was dynamically downscaled by the weather research and forecasting (WRF) model at 9 km resolution for South Africa. Lateral boundary conditions for WRF were provided from the European Centre for medium-range weather (ECMWF) reanalysis (ERA) interim data. The model biases for the rainfall were evaluated over the South Africa as a whole and its nine provinces separately by employing three different convective parameterization schemes, namely the (1) Kain–Fritsch (KF), (2) Betts–Miller–Janjic (BMJ) and (3) Grell–Devenyi ensemble (GDE) schemes. All three schemes have generated positive rainfall biases over South Africa, with the KF scheme producing the largest biases and mean absolute errors. Only the BMJ scheme could reproduce the intensity of rainfall anomalies, and also exhibited the highest correlation with observed interannual summer rainfall variability. In the KF scheme, a significantly high amount of moisture was transported from the tropics into South Africa. The vertical thermodynamic profiles show that the KF scheme has caused low level moisture convergence, due to the highly unstable atmosphere, and hence contributed to the widespread positive biases of rainfall. The negative bias in moisture, along with a stable atmosphere and negative biases of vertical velocity simulated by the GDE scheme resulted in negative rainfall biases, especially over the Limpopo Province. In terms of rain rate, the KF scheme generated the lowest number of low rain rates and the maximum number of moderate to high rain rates associated with more convective unstable environment. KF and GDE schemes overestimated the convective rain and underestimated the stratiform rain. However, the simulated convective and stratiform rain with BMJ scheme is in more agreement with the observations. This study also documents the performance of regional model in downscaling the large scale climate mode such as El Niño Southern Oscillation (ENSO) and subtropical dipole modes. The correlations between the simulated area averaged rainfalls over South Africa and Nino3.4 index were −0.66, −0.69 and −0.49 with KF, BMJ and GDE scheme respectively as compared to the observed correlation of −0.57. The model could reproduce the observed ENSO-South Africa rainfall relationship and could successfully simulate three wet (dry) years that are associated with La Niña (El Niño) and the BMJ scheme is closest to the observed variability. Also, the model showed good skill in simulating the excess rainfall over South Africa that is associated with positive subtropical Indian Ocean Dipole for the DJF season 2005/2006

    Moisture variability over the Indo-Pacific region and its influence on the Indian summer monsoon rainfall

    No full text
    The Indo-Pacific Ocean (i.e. region between 30°E and 150°E) has been experiencing a warming since the 1950s. At the same time, the large-scale summer monsoon rainfall over India and the moisture over the East Africa/Arabian Sea are both decreasing. In this study, we intend to investigate how the decrease of moisture over the East Africa/Arabian Sea is related to the Indo-Pacific Ocean warming and how this could affect the variability of the Indian summer monsoon rainfall. We performed the analysis for the period 1951–2012 based on observed precipitation, sea surface temperature and atmospheric reanalysis products and we verified the robustness of the result by comparing different datasets. The decreasing trend of moisture over the East Africa/Arabian Sea coincides with an increasing trend of moisture over the western Pacific region. This is accompanied by the strengthening (weakening) of the upward motion over the western Pacific (East Africa/Arabian Sea) that, consequently, contributes to modulate the western Pacific-Indian Ocean Walker circulation. At the same time, the low-level westerlies are weakening over the peninsular India, thus contributing to the reduction of moisture transport towards India. Therefore, rainfall has decreased over the Western Ghats and central-east India. Contrary to previous decades, since 2003 moisture over the East Africa/Arabian Sea started to increase and this is accompanied by the strengthening of convection due to increased warming of sea surface temperature over the western Arabian Sea. Despite this moisture increase over the Arabian Sea, we found that moisture transport is still weakening over the Indian landmass in the very recent decade and this has been contributing to the decreased precipitation over the northeast India and southern part of the Western Ghats
    corecore