77 research outputs found

    Considerations on the hydrogen peroxide electrogeneration

    Get PDF
    This paper presents some results that may be used as previous considerations to a hydrogen peroxide electrogeneration process design. A kinetic study of oxygen dissolution in aqueous solution is carried out and rate constants for oxygen dissolution are calculated. Voltammetric experiments on vitreous carbon cathode shown that the low saturation concentration drives the oxygen reduction process to a mass transfer controlled process which exhibits low values of limiting currents. Results have shown that the hydrogen peroxide formation and its decomposition to water are separated by 400 mV on the vitreous carbon surface. Diffusion coefficients for oxygen and hydrogen peroxide are calculated using data taken from Levich and Tafel plots. In a series of bulk electrolysis experiments hydrogen peroxide was electrogenerated at several potential values, and concentration profiles as a function of the electrical charged passed were obtained. Data shown that, since limiting current plateaus are poorly defined onto reticulated vitreous carbon, cathodic efficiency may be a good criterion for choosing the potential value in which hydrogen peroxide electrogeneration should be carried out.25225

    The transcriptome of Candida albicans mitochondria and the evolution of organellar transcription units in yeasts

    Full text link

    Genetic instability of an oligomycin resistance mutation in yeast is associated with an amplification of a mitochondrial DNA segment.

    No full text
    In the yeast Kluyveromyces lactis, mutations affecting mitochondrial functions are often highly unstable. In order to understand the basis of this genetic instability, we examined the case of an oligomycin resistant mutant. When the mutant was grown in the absence of the drug, the resistance was rapidly lost. This character showed a typical cytoplasmic inheritance. The unstable resistance was found to be associated with the presence of a repetitive DNA in which the repeating unit was a specific segment of the mitochondrial DNA. The amplified molecules were co-replicating with the wild type genome in the mutant cells. The spontaneous loss of the drug resistance was accompanied by the disappearance of the amplified DNA. The repetitive sequence came from a 405 base-pair segment immediately downstream of a cluster of two transfer RNA genes (threonyl 2 and glutamyl). Modified processing of these tRNAs was detected in the mutant. A possible mechanism by which these events could lead to drug resistance is discussed

    How to get to the right place at the right time: Rab/Ypt small GTPases and vesicle transport

    No full text
    Summary Vesicles often must be transported over long distances in a very crowded cytoplasmic environment encumbered by the cytoskeleton and membranes of different origin that provide an important barrier to their free diffusion. In animal cells with specialised tasks, such as neurons or endothelial cells, vesicles that are directed to the cell periphery are linked to the microtubular cytoskeleton tracks via association with motor proteins that allow their vectorial movement. In lower eukaryotes the actin cytoskeleton plays a prominent role in organising vesicle movement during polarised growth and mating. The Ras-like small GTPases of the Rab/Ypt family play an essential role in vesicle trafficking and due to their diversity and specific localisation have long been implicated in the selective delivery of vesicles. Recent evidence has cast doubt on the classical point of view of how this class of proteins acts in vesicle transport and suggests their involvement also in the events that permit vesicle anchoring to the cytoskeleton. Therefore, after a brief review of what is known about how vesicle movement is achieved in mammalian and yeast systems, and how Rab/Ypt proteins regulate the vesicle predocking events, it is discussed how these proteins might participate in the events that lead to vesicle movement through association with the cytoskeleton machinery

    Mitochondrial DNA of the yeast Kluyveromyces: guanine-cytosine rich sequence clusters.

    No full text
    Mitochondrial DNA from the yeast Kluyveromyces marxianus var. lactis (K.lactis) is a circular molecule of 39 kilobase-pairs. A genetic and physical map was constructed. We found that this genome contained a large number of guanine-cytosine (GC)-rich sequence clusters, many of which are characterized by the presence of SacII restriction sites (CCGCGG). The primary sequence of the GC clusters often showed a palindromic structure. These GC clusters were present in several varieties of K.marxianus, but not in others. The presence of these clusters is a major feature that distinguishes K.lactis strains from those of K.marxianus var. marxianus (including K.fragilis)

    Ordered processing of the polygenic transcripts from a mitochondrial transfer-RNA gene cluster in K. lactis.

    No full text
    In Saccharomyces cerevisiae, transcription of the mitochondrial genome starts at multiple initiation sites and is followed by the processing of multigenic transcripts at the 5' and 3' termini of tRNA sequences and in some intergenic regions. We have used a comparative approach to investigate the structure and function of the latter processing sites. We present here an analysis of the transcripts of a cluster of tRNA genes from the mitochondrial genome of Kluyveromyces lactis. The gene order of this cluster is the same as that of the cluster in S. cerevisiae but the sequence of the intergenic regions is different. A detailed analysis of transcripts has been performed using S1 mapping and primer extension techniques. The results can be summarized as follows: (1) transcription of the cluster very probably starts at initiation sites having the nonanucleotide sequence TTATAAGTA (which acts as a promoter in S. cerevisiae) and yields polygenic transcripts; (2) processing of these transcripts seems to occur through an ordered pathway of endonucleolytic events in which some tRNA sequences are preferentially excised and some endonucleolytic cuts occur more readily than others; (3) in two intergenic regions, strong signals indicate the existence of processing events. The sequences around these sites are similar in sequence and localization to S. cerevisiae intergenic processing sites, indicating a possible functional importance in maintaining a conserved order of tRNA genes in different species of yeasts
    corecore