1,533 research outputs found

    Correlated racing evidence accumulator models

    Get PDF
    Many models of response time that base choices on the first evidence accumulator to win arace to threshold rely on statistical independence between accumulators to achieve mathematicaltractability (e.g., Brown & Heathcote, 2008; Logan et al., 2014; Van Zandt et al., 2000).However, it is psychologically plausible that trial-to-trial fluctuations can cause both positivecorrelations (e.g., variability in arousal, attention or response caution that aect accumulatorsin the same way) and negative correlations (e.g., when evidence for each accumulator is computedrelative to a criterion). We examine the eects of such correlations in a racing accumulatormodel that remains tractable when they are present, the log-normal race (LNR Heathcote &Love, 2012). We first show that correlations are hard to estimate in binary choice data, and thattheir presence does not noticeably improve model fit to lexical-decision data (Wagenmakerset al., 2008) that is well fit by an independent LNR model. Poor estimation is attributableto the fact that estimation of correlation requires information about the relationship betweenaccumulator states but only the state of the winning accumulator is directly observed in binarychoice. We then show that this problem is remedied when discrete confidence judgments aremodelled by an extension of Vickers’ (1979) “balance-of-evidence” hypothesis proposed byReynolds et al. (submitted). In this “multiple-threshold race” model confidence is based onthe state of the losing accumulator judged relative to one or more extra thresholds. We showthat not only is correlation well estimated in a multiple-threshold log-normal race (MTLNR)model with as few as two confidence levels, but that it also resulted in clearly better fits toRatcli et al.’s (1994) recognition memory data than an independent mode. We concludethat the MTLNR provides a mathematically tractable tool that is useful both for investigatingcorrelations between accumulators and for modelling confidence judgments

    Adaptive Lévy processes and area-restricted search in human foraging

    Get PDF
    A considerable amount of research has claimed that animals’ foraging behaviors display movement lengths with power-law distributed tails, characteristic of Lévy flights and Lévy walks. Though these claims have recently come into question, the proposal that many animals forage using Lévy processes nonetheless remains. A Lévy process does not consider when or where resources are encountered, and samples movement lengths independently of past experience. However, Lévy processes too have come into question based on the observation that in patchy resource environments resource-sensitive foraging strategies, like area-restricted search, perform better than Lévy flights yet can still generate heavy-tailed distributions of movement lengths. To investigate these questions further, we tracked humans as they searched for hidden resources in an open-field virtual environment, with either patchy or dispersed resource distributions. Supporting previous research, for both conditions logarithmic binning methods were consistent with Lévy flights and rank-frequency methods–comparing alternative distributions using maximum likelihood methods–showed the strongest support for bounded power-law distributions (truncated Lévy flights). However, goodness-of-fit tests found that even bounded power-law distributions only accurately characterized movement behavior for 4 (out of 32) participants. Moreover, paths in the patchy environment (but not the dispersed environment) showed a transition to intensive search following resource encounters, characteristic of area-restricted search. Transferring paths between environments revealed that paths generated in the patchy environment were adapted to that environment. Our results suggest that though power-law distributions do not accurately reflect human search, Lévy processes may still describe movement in dispersed environments, but not in patchy environments–where search was area-restricted. Furthermore, our results indicate that search strategies cannot be inferred without knowing how organisms respond to resources–as both patched and dispersed conditions led to similar Lévy-like movement distributions

    Cooperative Intramolecular Dynamics Control the Chain-Length-Dependent Glass Transition in Polymers

    Get PDF
    The glass transition is a long-standing unsolved problem in materials science. For polymers, our understanding of glass formation is particularly poor because of the added complexity of chain connectivity and flexibility; structural relaxation of polymers thus involves a complex interplay between intramolecular and intermolecular cooperativity. Here, we study how the glass-transition temperature Tg varies with molecular weight M for different polymer chemistries and chain flexibilities. We find that Tg(M) is controlled by the average mass (or volume) per conformational degree of freedom and that a “local” molecular relaxation (involving a few conformers) controls the larger-scale cooperative α relaxation responsible for Tg. We propose that dynamic facilitation where a local relaxation facilitates adjacent relaxations, leading to hierarchical dynamics, can explain our observations, including logarithmic Tg(M) dependences. Our study provides a new understanding of molecular relaxations and the glass transition in polymers, which paves the way for predictive design of polymers based on monomer-scale metrics

    Pulmonary Embolism Incidence and Fatality Trends in Chinese Hospitals from 1997 to 2008: A Multicenter Registration Study

    Get PDF
    BACKGROUND: There has not been sufficient evidence to support the Asians being less susceptible to pulmonary embolism (PE) than other ethnicities, because the prevalence of PE/deep venous thrombosis (DVT) in different racial and ethnic groups has not been carefully studied until recently except in Caucasians. To test the hypothesis that the Chinese population has a lower risk for PE, this study comprehensively assessed the hospital-based incidence and case fatality rates for PE during the 1997-2008 in China. METHODS: A registration study of patients with suspected PE syndromes admitted to 60 level-3 hospitals involved in the National Cooperative Project for the Prevention and Treatment of Venous Thromboembolism (NCPPT) was conducted from January 1997 to December 2008. The only exclusion criterion was an age of less than 18 years. Helical computed tomography scan, ventilation-perfusion lung scintigraphy or pulmonary angiography was carried out before or after hospitalization. All images were reviewed and evaluated independently by two specialists. RESULTS: A total of 18,206 patients were confirmed with PE from 16,972,182 hospital admissions. The annual incidence was 0.1% (95% CI: 0.1% to 0.2%). The overall incidence of PE in male patients (0.2%, 95% CI: 0.1% to 0.3%) was higher than that in female patients (0.1% and 95% CI: 0.0% to 0.1%). An increasing incidence gradient for PE was noticed from Southern to Northern China. In addition, the case fatality rate was apparently decreasing: 25.1% (95% CI: 16.2% to 36.9%) in 1997 to 8.7% (95% CI: 3.5% to 15.8%) in 2008. CONCLUSIONS: Our findings suggest the relatively stable PE incidence and decreasing fatality trends in Chinese hospitals may be partially attributable to the implementation of the NCCPT and suggest the government should reevaluate the severity of PE so that health resources for the prevention, diagnosis and treatment of PE could be used to their fullest

    The inevitable youthfulness of known high-redshift radio galaxies

    Full text link
    Radio galaxies can be seen out to very high redshifts, where in principle they can serve as probes of the early evolution of the Universe. Here we show that for any model of radio-galaxy evolution in which the luminosity decreases with time after an initial rapid increase (that is, essentially all reasonable models), all observable high-redshift radio-galaxies must be seen when the lobes are less than 10^7 years old. This means that high-redshift radio galaxies can be used as a high-time-resolution probe of evolution in the early Universe. Moreover, this result helps to explain many observed trends of radio-galaxy properties with redshift [(i) the `alignment effect' of optical emission along radio-jet axes, (ii) the increased distortion in radio structure, (iii) the decrease in physical sizes, (iv) the increase in radio depolarisation, and (v) the increase in dust emission] without needing to invoke explanations based on cosmology or strong evolution of the surrounding intergalactic medium with cosmic time, thereby avoiding conflict with current theories of structure formation.Comment: To appear in Nature. 4 pages, 2 colour figures available on request. Also available at http://www-astro.physics.ox.ac.uk/~km

    The politics of the teaching of reading

    Get PDF
    Historically, political debates have broken out over how to teach reading in primary schools and infant classrooms. These debates and “reading wars” have often resulted from public concerns and media reportage of a fall in reading standards. They also reflect the importance placed on learning to read by parents, teachers, employers, and politicians. Public and media-driven controversies over the teaching of reading have resulted in intense public and professional debates over which specific methods and materials to use with beginning readers and with children who have reading difficulties. Recently, such debates have led to a renewed emphasis on reading proficiency and “standardized” approaches to teaching reading and engaging with literacy. The universal acceptance of the importance of learning to read has also led to vested interests in specific methods, reading programmes, and early literacy assessments amongst professional, business, commercial, and parental lobbying groups. This article traces these debates and the resulting growing support for a quantitative reductionist approach to early-reading programmes

    Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia.

    Get PDF
    The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 109 childhood T-ALL cases, most commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1-mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1, SUFU, and GLI alleles into mammalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restricted gene disruption in transgenic zebrafish, we found that ptch1 mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-activating mutations are driver oncogenic alterations in high-risk T-ALL, providing a molecular rationale for targeted therapy in this disease

    Feller Processes: The Next Generation in Modeling. Brownian Motion, L\'evy Processes and Beyond

    Get PDF
    We present a simple construction method for Feller processes and a framework for the generation of sample paths of Feller processes. The construction is based on state space dependent mixing of L\'evy processes. Brownian Motion is one of the most frequently used continuous time Markov processes in applications. In recent years also L\'evy processes, of which Brownian Motion is a special case, have become increasingly popular. L\'evy processes are spatially homogeneous, but empirical data often suggest the use of spatially inhomogeneous processes. Thus it seems necessary to go to the next level of generalization: Feller processes. These include L\'evy processes and in particular Brownian motion as special cases but allow spatial inhomogeneities. Many properties of Feller processes are known, but proving the very existence is, in general, very technical. Moreover, an applicable framework for the generation of sample paths of a Feller process was missing. We explain, with practitioners in mind, how to overcome both of these obstacles. In particular our simulation technique allows to apply Monte Carlo methods to Feller processes.Comment: 22 pages, including 4 figures and 8 pages of source code for the generation of sample paths of Feller processe
    corecore