447 research outputs found

    The effect of Aharanov-Bohm phase on the magnetic-field dependence of two-pulse echos in glasses at low temperatures

    Full text link
    The anomalous response of glasses in the echo amplitude experiment is explained in the presence of a magnetic field. We have considered the low energy excitations in terms of an effective two level system. The effective model is constructed on the flip-flop configuration of two interacting two level systems. The magnetic field affects the tunneling amplitude through the Aharanov-Bohm effect. The effective model has a lower scale of energy in addition to the new distribution of tunneling parameters which depend on the interaction. We are able to explain some features of echo amplitude versus a magnetic field, namely, the dephasing effect at low magnetic fields, dependence on the strength of the electric field, pulse separation effect and the influence of temperature. However this model fails to explain the isotope effects which essentially can be explained by the nuclear quadrupole moment. We will finally discuss the features of our results.Comment: 8 pages, 7 figure

    Clausius inequality and optimality of quasi static transformations for nonequilibrium stationary states

    Full text link
    Nonequilibrium stationary states of thermodynamic systems dissipate a positive amount of energy per unit of time. If we consider transformations of such states that are realized by letting the driving depend on time, the amount of energy dissipated in an unbounded time window becomes then infinite. Following the general proposal by Oono and Paniconi and using results of the macroscopic fluctuation theory, we give a natural definition of a renormalized work performed along any given transformation. We then show that the renormalized work satisfies a Clausius inequality and prove that equality is achieved for very slow transformations, that is in the quasi static limit. We finally connect the renormalized work to the quasi potential of the macroscopic fluctuation theory, that gives the probability of fluctuations in the stationary nonequilibrium ensemble

    Multiorbital effects on the transport and the superconducting fluctuations in LiFeAs

    Full text link
    The resistivity, Hall effect and transverse magnetoresistance (MR) have been measured in low residual resistivity single crystals of LiFeAs. A comparison with angle resolved photoemission spectroscopy and quantum oscillation data implies that four carrier bands unevenly contribute to the transport. However the scattering rates of the carriers all display the T^2 behavior expected for a Fermi liquid. Near Tc low field deviations of the MR with respect to a H^2 variation permit us to extract the superconducting fluctuation contribution to the conductivity. Though below Tc the anisotropy of superconductivity is rather small, the superconducting fluctuations display a quasi ideal two-dimensional behavior which persists up to 1.4 Tc. These results call for a refined theoretical understanding of the multiband behavior of superconductivity in this pnictide.Comment: 8pages with supplementary material, 6 figure

    A precursor state to unconventional superconductivity in CeIrIn5{_5}

    Full text link
    We present sensitive measurements of the Hall effect and magnetoresistance in CeIrIn5{_5} down to temperatures of 50 mK and magnetic fields up to 15 T. The presence of a low temperature coherent Kondo state is established. Deviations from Kohler's rule and a quadratic temperature dependence of the cotangent of the Hall angle are reminiscent of properties observed in the high temperature superconducting cuprates. The most striking observation pertains to the presence of a \textit{precursor} state--characterized by a change in the Hall mobility--that appears to precede the superconductivity in this material, in similarity to the pseudogap in the cuprate high TcT_c superconductors.Comment: 4 figure

    Damping in high-frequency metallic nanomechanical resonators

    Full text link
    We have studied damping in polycrystalline Al nanomechanical resonators by measuring the temperature dependence of their resonance frequency and quality factor over a temperature range of 0.1 - 4 K. Two regimes are clearly distinguished with a crossover temperature of 1 K. Below 1 K we observe a logarithmic temperature dependence of the frequency and linear dependence of damping that cannot be explained by the existing standard models. We attribute these phenomena to the effect of the two-level systems characterized by the unexpectedly long (at least two orders of magnitude longer) relaxation times and discuss possible microscopic models for such systems. We conclude that the dynamics of the two-level systems is dominated by their interaction with one-dimensional phonon modes of the resonators.Comment: 5 pages, 3 figure

    Weak- to strong pinning crossover

    Full text link
    Material defects in hard type II superconductors pin the flux lines and thus establish the dissipation-free current transport in the presence of a finite magnetic field. Depending on the density and pinning force of the defects and the vortex density, pinning is either weak-collective or strong. We analyze the weak- to strong pinning crossover of vortex matter in disordered superconductors and discuss the peak effect appearing naturally in this context.Comment: 4 pages, 2 figure

    Non-ohmicity and energy relaxation in diffusive 2D metals

    Full text link
    We analyze current-voltage characteristics taken on Au-doped indium-oxide films. By fitting a scaling function to the data, we extract the electron-phonon scattering rate as function of temperature, which yields a quadratic dependence of the electron-phonon scattering rate on temperature from 1K down to 0.28K. The origin of this enhanced electron-phonon scattering rate is ascribed to the mechanism proposed by Sergeev and Mitin.Comment: 7 pages, 6 figure

    Comment on "On the importance of the free energy for elasticity under pressure"

    Full text link
    Marcus et al. (Marcus P, Ma H and Qiu S L 2002 J. Phys.: Condens. Matter 14 L525) claim that thermodynamic properties of materials under pressure must be computed using the Gibbs free energy GG, rather than the internal energy EE. Marcus et al. state that ``The minima of GG, but not of EE, give the equilibrium structure; the second derivatives of GG, but not of EE, with respect to strains at the equilibrium structure give the equilibrium elastic constants.'' Both statements are incorrect.Comment: Commen

    Negative Magnetoresistance in the Nearest-neighbor Hopping Conduction

    Full text link
    We propose a size effect which leads to the negative magnetoresistance in granular metal-insulator materials in which the hopping between two nearest neighbor clusters is the main transport mechanism. We show that the hopping probability increases with magnetic field. This is originated from the level crossing in a few-electron cluster. Thus, the overlap of electronic states of two neighboring clusters increases, and the negative magnetoresistance is resulted.Comment: Latex file, no figur

    Localized Wavefunctions and Magnetic Band Structure for Lateral Semiconductor Superlattices

    Full text link
    In this paper we present calculations on the electronic band structure of a two-dimensional lateral superlattice subject to a perpendicular magnetic field by employing a projection operator technique based on the ray-group of magnetotranslation operators. We construct a new basis of appropriately symmetrized Bloch-like wavefunctions as linear combination of well-localized magnetic-Wannier functions. The magnetic field was consistently included in the Wannier functions defined in terms of free-electron eigenfunctions in the presence of external magnetic field in the symmetric gauge. Using the above basis, we calculate the magnetic energy spectrum of electrons in a lateral superlattice with bi-directional weak electrostatic modulation. Both a square lattice and a triangular one are considered as special cases. Our approach based on group theory handles the cases of integer and rational magnetic fluxes in a uniform way and the provided basis could be convenient for further both analytic and numerical calculations.Comment: 19 pages, 5 figures. accepted to Int. J. Mod. Phys. B (April 2006
    • …
    corecore