93 research outputs found

    Unified line profiles for hydrogen perturbed by collisions with protons: satellites and asymmetries

    Get PDF
    We present new calculations of unified line profiles for hydrogen perturbed by collisions with protons. We report on new calculations of the potential energies and dipole moments which allow the evaluation of profiles for the lines of the Lyman series up to Lymanδ\delta and the Balmer series up to Balmer10. Unified calculations only existed for the lines Lymanα\alpha to Lymanγ\gamma and Balmerα\alpha including the H2+_2^+ quasi-molecule. These data are available as online material accompanying this paper and should be included in atmosphere models, in place of the Stark effect of protons, since the quasi-molecular contributions cause not only satellites, but large asymmetries that are unaccounted for in models that assume Stark broadening of electrons and protons are equal.Comment: 13 pages, 25 figures. Accepted for publication in MNRA

    Estrelas anãs brancas e subanãs no sloan digital sky survey

    Get PDF
    White dwarf stars are the final observable evolutionary state of over 95% of stars and also a common outcome in binary evolution. Therefore, studying white dwarfs is a powerful tool to understand both single and binary stellar evolution, local initial mass function, and post-main sequence mass loss, leading us to a better comprehension of the history of stellar formation and evolution of different stellar populations. In order to make this type of studies possible, a large and preferably complete sample of white dwarf stars, covering the whole range of physical parameters, is required. The simplest way to achieve that is to take advantage of data provided by large surveys. The Sloan Digital Sky Survey has already allowed the increase of the number of known white dwarf stars fivefold up to its data release 10. In this work, we extended the search for white dwarfs to the new objects in the data release 12, discovering 3 157 new white dwarfs and 1 349 new subdwarfs. For the first time, we have extended this search to log g < 6.5, corresponding to M < 0.3 M⊙. White dwarfs below this mass limit cannot be formed through single evolution within a Hubble time; however, if the star is part of a close binary system, the mass loss of the system may be so intense that the resulting white dwarf has mass below the single evolution limit. These objects are known as extremely-low mass white dwarfs (ELMs) They show Teff < 20 000 K and 5.0 . log g . 6.5 and spectra very similar to main sequence A stars. Less than a hundred of them are known, and most objects were discovered relying on biased selection criteria, that excluded cool (Teff < 9 000 K), lowermass (M . 0.15 M⊙) ELMs, making it difficult to validate the models and comprehend the properties of the ELMs as a class. We have identified thousands of objects whose physical properties, effective temperature and surface gravity, place them in the range of by-products of binary interaction such as the ELMs. We have called them sdAs, referring to their sub-main sequence log g and hydrogen dominated spectra. They seem to be composed of overlapping stellar populations, and we found that at least 7% are more likely ELMs or their precursors, the pre-ELMs, than main sequence stars. Obtaining time-resolved spectroscopy for 26 objects, we could confirm 15 to be in close binaries. One of them is also an eclipsing system, while another is a pulsator — the eighth member of the pulsating ELM class. Other six new pulsators were found as part of our follow-up, five of them in the vicinity of the ELM instability strip. With these results, we increase the population of ELMs by 20%, raising the fraction of cool ELMs from 4 to 20%, which is consistent with the predictions from the evolutionary models.Estrelas anãs brancas são o último estágio evolutivo observável de mais de 95% das estrelas e também um resultado comum na evolução de estrelas binárias. O estudo de anãs brancas é, portanto, uma ferramenta poderosa na compreensão da evolução de estrelas simples e binárias, da função de massa inicial local, e da perda de massa após a sequência principal, levando-nos a uma melhor compreensão do histórico de formação e evolução estelar de diferentes populações. Para que esses estudos sejam possíveis, é necessária uma amostra grande e preferencialmente completa de anãs brancas, cobrindo todo o intervalo de parâmetros físicos. A maneira mais simples de obter isso é utilizando dados de grandes projetos de mapeamento. O Sloan Digital Sky Survey já permitiu o aumento do número de anãs brancas conhecidas em cinco vezes até o data release 10. Neste trabalho, estendemos a busca por anãs brancas aos novos objetos no data release 12, descobrindo 3 157 novas anãs brancas e 1 349 novas subanãs. Pela primeira vez, estendemos essa busca para log g < 6.5, correspondente a M < 0.3 M⊙. Anãs brancas abaixo desse limite de massa não podem formar-se em um tempo de Hubble; contudo, se a estrela é parte de um sistema de binárias próximas, a perda de massa pode ser tão intensa que a anã branca resultante tem massa inferior ao limite por evolução simples. Esses objetos são chamados anãs brancas de massa extremamente-baixa (ELMs, do inglês extremely-low mass white dwarfs) Elas têm Teff < 20 000 K e 5.0 . log g . 6.5 e espectros muito similares a estrelas A de sequência principal. Menos de cem são conhecidas, e a maioria dos objetos foi descoberta tendo em conta um critério de seleção tendencioso, que excluiu ELMs frias (Teff < 9 000 K) e com mais baixa massa (M . 0.15 M⊙), tornando difícil verificar modelos e compreender as propriedades das ELMs como classe. Nós identificamos milhares de objetos cujas propriedades físicas, temperatura efetiva e log g, estão no intervalo de produtos de evolução binária, como as ELMs. Nós os chamamos de sdAs, referindo-nos ao seu log g que as coloca abaixo da sequência principal e seu espectro dominado por hidrogênio. As sdAs parecem conter populações estelares sobrepostas, e encontramos que 7% são mais compatíveis com (pre-)ELMs do que com objetos de sequência principal. Obtivemos espectroscopia resolvida temporalmente para 26 objetos e pudemos confirmar que 15 estão em binárias. Um objeto faz parte de um sistema eclipsante, enquanto outro é pulsante — o oitavo membro da classe de ELMs pulsantes. Outros seis objetos também apresentaram pulsações em nossas observações, cinco desses estão na vizinhança da faixa de instabilidade das ELMs. Com estes resultados, aumentamos a população de ELMs por um fator de 20%, elevando a fração de ELMs de 4 para 20%, um valor que é consistente com as previsões de modelos evolucionários

    The sdA problem - II. Photometric and Spectroscopic Follow-up

    Get PDF
    Subdwarf A star (sdA) is a spectral classification given to objects showing H-rich spectra and sub-main sequence surface gravities, but effective temperature lower than the zero-age horizontal branch. Their evolutionary origin is an enigma. In this work, we discuss the results of follow-up observations of selected sdAs. We obtained time resolved spectroscopy for 24 objects, and time-series photometry for another 19 objects. For two targets, we report both spectroscopy and photometry observations. We confirm seven objects to be new extremely-low mass white dwarfs (ELMs), one of which is a known eclipsing star. We also find the eighth member of the pulsating ELM class.Comment: Accepted for publication in MNRAS. 19 pages, 30 figures, 6 table

    The sdA problem : III. New extremely low-mass white dwarfs and their precursors from Gaia astrometry

    Get PDF
    The physical nature of the sdA stars – cool hydrogen-rich objects with spectroscopic surface gravities intermediate between main-sequence and canonical-mass white dwarfs – has been elusive since they were found in Sloan Digital Sky Survey Data Release 12 spectra. The population is likely dominated by metal-poor A/F stars in the halo with overestimated surface gravities, with a small contribution of extremely low-mass white dwarfs and their precursors, i.e. ELMs and pre-ELMs. In this work, we seek to identify (pre-)ELMs with radii smaller than what is possible for main-sequence stars, allowing even for very low metallicity. We analyse 3891 sdAs previously identified in the Sloan Digital Sky Survey using Gaia DR2 data. Our Monte Carlo analysis supports that 90 of these are inconsistent with the main sequence. 37 lie close to or within the canonical white dwarf cooling sequence, while the remaining 53 lie between the canonical white dwarfs and main sequence, which we interpret as likely (pre-)ELMs given their spectral class. Of these, 30 pass more conservative criteria that allow for higher systematic uncertainties on the parallax, as well as an approximate treatment of extinction. Our identifications increase the number of known (pre-)ELMs by up to 50 per cent, demonstrating how Gaia astrometry can reveal members of the compact (pre-)ELM subpopulation of the sdA spectral class

    The sdA problem - III. New extremely low-mass white dwarfs and their precursors from Gaia astrometry

    Get PDF
    The physical nature of the sdA stars---cool hydrogen-rich objects with spectroscopic surface gravities intermediate between main sequence and canonical mass white dwarfs---has been elusive since they were found in Sloan Digital Sky Survey Data Release 12 spectra. The population is likely dominated by metal-poor A/F stars in the halo with overestimated surface gravities, with a small contribution of extremely low-mass white dwarfs and their precursors, i.e., ELMs and pre-ELMs. In this work, we seek to identify (pre-)ELMs with radii smaller than is possible for main sequence stars, allowing even for very low metallicity. We analyse 3891 sdAs previously identified in the Sloan Digital Sky Survey using Gaia DR2 data. Our Monte Carlo analysis supports that 90 of these are inconsistent with the main sequence. 37 lie close to or within the canonical white dwarf cooling sequence, while the remaining 53 lie between the canonical white dwarfs and main sequence, which we interpret as likely (pre-)ELMs given their spectral class. Of these, 30 pass more conservative criteria that allow for higher systematic uncertainties on the parallax, as well as an approximate treatment of extinction. Our identifications increase the number of known (pre-)ELMs by up to 50 per cent, demonstrating how Gaia astrometry can reveal members of the compact (pre-)ELM subpopulation of the sdA spectral class.Comment: 13 pages, 19 figures, 1 table. Accepted for publication in MNRA

    Alone but not lonely: Observational evidence that binary interaction is always required to form hot subdwarf stars

    Full text link
    Hot subdwarfs are core-helium burning stars that show lower masses and higher temperatures than canonical horizontal branch stars. They are believed to be formed when a red giant suffers an extreme mass-loss episode. Binary interaction is suggested to be the main formation channel, but the high fraction of apparently single hot subdwarfs (up to 30%) has prompted single star formation scenarios to be proposed. If such formation scenarios without interaction were possible, that would also imply the existence of hot subdwarfs in wide binaries that have undergone no interaction. We probe the existence of these systems by analysing light curves from the Transiting Exoplanet Survey Satellite (TESS) for all known hot subdwarfs with a main sequence wide binary companion, and by searching for common proper motion pairs to spectroscopically confirmed hot subdwarfs. We find that (i) the companions in composite hot subdwarfs show short rotation periods when compared to field main sequence stars. They display a triangular-shaped distribution with a peak around 2.5 days, similar to what is observed for young open clusters. This observed distribution of rotation rates for the companions in known wide hot subdwarf binaries provides evidence of previous interaction causing spin-up. We also report (ii) a shortage of hot subdwarfs with candidate common proper motion companions, considering the frequency of such systems among progenitors. We identify only 16 candidates after probing 2938 hot subdwarfs with good astrometry. Out of those, at least six seem to be hierarchical triple systems, in which the hot subdwarf is part of an inner binary. These results suggest that binary interaction is always required for the formation of hot subdwarfs.Comment: 17 pages, 11 figures, 5 tables. Accepted for publication in A&

    White dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 16

    Get PDF
    White dwarfs are the end state of the evolution of more than 97 per cent of all stars, and therefore carry information on the structure and evolution of the Galaxy through their luminosity function and initial-to-final mass relation. Examining the new spectra of all white or blue stars in the Sloan Digital Sky Survey Data Release 16, we report the spectral classification of 2410 stars, down to our identification cut-off of signal-to-noise ratio equal to three. We newly identify 1404 DAs, 189 DZs, 103 DCs, 12 DBs, and nine CVs. The remaining objects are a mix of carbon or L stars (dC/L), narrow-lined hydrogen-dominated stars (sdA), dwarf F stars, and P Cyg objects. As white dwarf stars were not targeted by SDSS DR16, the number of new discoveries is much smaller than in previous releases. We also report atmospheric parameters and masses for a subset consisting of 555 new DAs, 10 new DBs, and 85 DZs for spectra with signal-to-noise ratio larger than 10

    Mysterious, variable, and extremely hot : white dwarfs showing ultra-high excitation lines : I. Photometric variability

    Get PDF
    Context. About 10% of all stars exhibit absorption lines of ultra-highly excited (UHE) metals (e.g., O viii) in their optical spectra when entering the white dwarf cooling sequence. This is something that has never been observed in any other astrophysical object, and poses a decades-long mystery in our understanding of the late stages of stellar evolution. The recent discovery of a UHE white dwarf that is both spectroscopically and photometrically variable led to the speculation that the UHE lines might be created in a shock-heated circumstellar magnetosphere. Aims. We aim to gain a better understanding of these mysterious objects by studying the photometric variability of the whole popula tion of UHE white dwarfs, and white dwarfs showing only the He ii line problem, as both phenomena are believed to be connected. Methods. We investigate (multi-band) light curves from several ground- and space-based surveys of all 16 currently known UHE white dwarfs (including one newly discovered) and eight white dwarfs that show only the He ii line problem. Results. We find that 75+8 −13% of the UHE white dwarfs, and 75+9 −19% of the He ii line problem white dwarfs are significantly photo metrically variable, with periods ranging from 0.22 d to 2.93 d and amplitudes from a few tenths to a few hundredths of a magnitude. The high variability rate is in stark contrast to the variability rate amongst normal hot white dwarfs (we find 9+4 −2%), marking UHE and He ii line problem white dwarfs as a new class of variable stars. The period distribution of our sample agrees with both the orbital period distribution of post-common-envelope binaries and the rotational period distribution of magnetic white dwarfs if we assume that the objects in our sample will spin-up as a consequence of further contraction. Conclusions. We find further evidence that UHE and He ii line problem white dwarfs are indeed related, as concluded from their overlap in the Gaia HRD, similar photometric variability rates, light-curve shapes and amplitudes, and period distributions. The lack of increasing photometric amplitudes towards longer wavelengths, as well as the nondetection of optical emission lines arising from the highly irradiated face of a hypothetical secondary in the optical spectra of our stars, makes it seem unlikely that an irradiated late-type companion is the origin of the photometric variability. Instead, we believe that spots on the surfaces of these stars and/or geometrical effects of circumstellar material might be responsible
    • …
    corecore