145 research outputs found

    Isentropic Analysis of Convective Motions

    Get PDF
    This paper analyzes the convective mass transport by sorting air parcels in terms of their equivalent potential temperature to determine an isentropic streamfunction. By averaging the vertical mass flux at a constant value of the equivalent potential temperature, one can compute an isentropic mass transport that filters out reversible oscillatory motions such as gravity waves. This novel approach emphasizes the fact that the vertical energy and entropy transports by convection are due to the combination of ascending air parcels with high energy and entropy and subsiding air parcels with lower energy and entropy. Such conditional averaging can be extended to other dynamic and thermodynamic variables such as vertical velocity, temperature, or relative humidity to obtain a comprehensive description of convective motions. It is also shown how this approach can be used to determine the mean diabatic tendencies from the three-dimensional dynamic and thermodynamic fields. A two-stream approximation that partitions the isentropic circulation into a mean updraft and a mean downdraft is also introduced. This offers a straightforward way to identify the mean properties of rising and subsiding air parcels. The results from the two-stream approximation are compared with two other definitions of the cloud mass flux. It is argued that the isentropic analysis offers a robust definition of the convective mass transport that is not tainted by the need to arbitrarily distinguish between convection and its environment, and that separates the irreversible convective overturning fromoscillations associated with gravity waves

    The key physical parameters governing frictional dissipation in a precipitating atmosphere

    Full text link
    Precipitation generates small-scale turbulent air flows the energy of which ultimately dissipates to heat. The power of this process has previously been estimated to be around 2-4 W m-2 in the tropics: a value comparable in magnitude to the dynamic power of the global circulation. Here we suggest that this previous power estimate is approximately double the true figure. Our result reflects a revised evaluation of the mean precipitation path length Hp. We investigate the dependence of Hp on surface temperature,relative humidity,temperature lapse rate and degree of condensation in the ascending air. We find that the degree of condensation,defined as the relative change of the saturated water vapor mixing ratio in the region of condensation, is a major factor determining Hp. We estimate from theory that the mean large-scale rate of frictional dissipation associated with total precipitation in the tropics lies between 1 and 2 W m-2 and show that our estimate is supported by empirical evidence. We show that under terrestrial conditions frictional dissipation constitutes a minor fraction of the dynamic power of condensation-induced atmospheric circulation,which is estimated to be at least 2.5 times larger. However,because Hp increases with surface temperature Ts, the rate of frictional dissipation would exceed that of condensation-induced dynamics, and thus block major circulation, at Ts >~320 K in a moist adiabatic atmosphere.Comment: 12 pp, 2 figure

    Increases in moist-convective updraught velocities with warming in radiative-convective equilibrium

    Get PDF
    The scaling of updraught velocities over a wide range of surface temperatures is investigated in simulations of radiative-convective equilibrium with a cloud-system resolving model. The updraught velocities increase with warming, with the largest fractional increases occurring in the upper troposphere and for the highest percentile updraughts. A plume model approximately reproduces the increases in updraught velocities if the plume environment is prescribed as the mean profile in each simulation while holding the entrainment and microphysical assumptions fixed. Convective available potential energy (CAPE) also increases with warming in the simulations but at a much faster fractional rate when compared with the square of the updraught velocities. This discrepancy is investigated with a two-plume model in which a weakly entraining plume represents the most intense updraughts, and the environment is assumed to adjust so that a more strongly entraining plume has negligible buoyancy. The two-plume model suggests that updraught velocities increase with warming at a lower fractional rate than implied by the CAPE because of the influence of entrainment on both the mean stratification and the updraughts themselves.National Science Foundation (U.S.) (grant AGS-1148594)United States. National Aeronautics and Space Administration. Research Opportunities in Earth and Space Science (grant 09-IDS09-0049

    Moist synoptic transport of CO2 along the mid-latitude storm track

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L09804, doi:10.1029/2011GL047238.Atmospheric mixing ratios of CO2 are strongly seasonal in the Arctic due to mid-latitude transport. Here we analyze the seasonal influence of moist synoptic storms by diagnosing CO2 transport from a global model on moist isentropes (to represent parcel trajectories through stormtracks) and parsing transport into eddy and mean components. During winter when northern plants respire, warm moist air, high in CO2, is swept poleward into the polar vortex, while cold dry air, low in CO2, that had been transported into the polar vortex earlier in the year is swept equatorward. Eddies reduce seasonality in mid-latitudes by ∼50% of NEE (∼100% of fossil fuel) while amplifying seasonality at high latitudes. Transport along stormtracks is correlated with rising, moist, cloudy air, which systematically hides this CO2 transport from satellites. We recommend that (1) regional inversions carefully account for meridional transport and (2) inversion models represent moist and frontal processes with high fidelity.This research is supported by the National Aeronautics and Space Administration contracts NNX08AT77G, NNX06AC75G, and NNX08AM56G

    Large-eddy simulation in an anelastic framework with closed water and entropy balances

    Get PDF
    A large-eddy simulation (LES) framework is developed for simulating the dynamics of clouds and boundary layers with closed water and entropy balances. The framework is based on the anelastic equations in a formulation that remains accurate for deep convection. As prognostic variables, it uses total water and entropy, which are conserved in adiabatic and reversible processes, including reversible phase changes of water. This has numerical advantages for modeling clouds, in which reversible phase changes of water occur frequently. The equations of motion are discretized using higher-order weighted essentially nonoscillatory (WENO) discretization schemes with strong stability preserving time stepping. Numerical tests demonstrate that the WENO schemes yield simulations superior to centered schemes, even when the WENO schemes are used at coarser resolution. The framework is implemented in a new LES code written in Python and Cython, which makes the code transparent and easy to use for a wide user group
    • …
    corecore