301 research outputs found

    Epitope Mapping of HIV-Specific CD8+ T cells in a Cohort Dominated by Clade A1 Infection

    Get PDF
    CD8+ T cell responses are often detected at large magnitudes in HIV-infected subjects, and eliciting these responses is the central aim of many HIV-1 vaccine strategies. Population differences in CD8+ T cell epitope specificity will need to be understood if vaccines are to be effective in multiple geographic regions.In a large Kenyan cohort, we compared responsive CD8+ T cell HIV-1 Env overlapping peptides (OLPs) to Best Defined Epitopes (BDEs), many of which have been defined in clade B infection. While the majority of BDEs (69%) were recognized in this population, nearly half of responsive OLPs (47%) did not contain described epitopes. Recognition frequencies of BDEs were inversely correlated to epitopic sequence differences between clade A1 and BDE (P = 0.019), and positively selected residues were more frequent in "new" OLPs (without BDEs). We assessed the impact of HLA and TAP binding on epitope recognition frequencies, focusing on predicted and actual epitopes in the HLA B7 supertype.Although many previously described CD8 epitopes were recognized, several novel CD8 epitopes were defined in this population, implying that epitope mapping efforts have not been completely exhausted. Expansion of these studies will be critical to understand population differences in CD8 epitope recognition

    Uptake and effectiveness of the Children's Fitness Tax Credit in Canada: the rich get richer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Government of Canada implemented a Children's Fitness Tax Credit (CFTC) in 2007 which allows a non-refundable tax credit of up to $500 to register a child in an eligible physical activity (PA) program. The purposes of this study were to assess whether the awareness, uptake, and perceived effectiveness of this tax credit varied by household income among Canadian parents.</p> <p>Methods</p> <p>An internet-based panel survey was conducted in March 2009 with a representative sample of 2135 Canadians. Of those, parents with children aged 2 to 18 years of age (<it>n </it>= 1004) were asked if their child was involved in organized PA programs (including dance and sports), the associated costs to register their child in these programs, awareness of the CFTC, if they had claimed the CFTC for the tax year 2007, and whether they planned to claim it in the upcoming year. Parents were also asked if they believed the CFTC has lead to their child being more involved in PA programs.</p> <p>Results</p> <p>Among parents, 54.4% stated their child was in organized PA and 55.5% were aware of the CFTC. Parents in the lowest income quartile were significantly less aware and less likely to claim the CFTC than other income groups. Among parents who had claimed the CFTC, few (15.6%) believed it had increased their child's participation in PA programs.</p> <p>Conclusions</p> <p>More than half of Canadian parents with children have claimed the CFTC. However, the tax credit appears to benefit the wealthier families in Canada.</p

    The genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1

    Get PDF
    Defective responses to DNA single strand breaks underlie various neurodegenerative diseases. However, the exact role of this repair pathway during the development and maintenance of the nervous system is unclear. Using murine neural-specific inactivation of Xrcc1, a factor that is critical for the repair of DNA single strand breaks, we found a profound neuropathology that is characterized by the loss of cerebellar interneurons. This cell loss was linked to p53-dependent cell cycle arrest and occurred as interneuron progenitors commenced differentiation. Loss of Xrcc1 also led to the persistence of DNA strand breaks throughout the nervous system and abnormal hippocampal function. Collectively, these data detail the in vivo link between DNA single strand break repair and neurogenesis and highlight the diverse consequences of specific types of genotoxic stress in the nervous system

    Requirement of Mouse BCCIP for Neural Development and Progenitor Proliferation

    Get PDF
    Multiple DNA repair pathways are involved in the orderly development of neural systems at distinct stages. The homologous recombination (HR) pathway is required to resolve stalled replication forks and critical for the proliferation of progenitor cells during neural development. BCCIP is a BRCA2 and CDKN1A interacting protein implicated in HR and inhibition of DNA replication stress. In this study, we determined the role of BCCIP in neural development using a conditional BCCIP knock-down mouse model. BCCIP deficiency impaired embryonic and postnatal neural development, causing severe ataxia, cerebral and cerebellar defects, and microcephaly. These development defects are associated with spontaneous DNA damage and subsequent cell death in the proliferative cell populations of the neural system during embryogenesis. With in vitro neural spheroid cultures, BCCIP deficiency impaired neural progenitor's self-renewal capability, and spontaneously activated p53. These data suggest that BCCIP and its anti-replication stress functions are essential for normal neural development by maintaining an orderly proliferation of neural progenitors

    In Vivo Analysis of the Role of O-Glycosylations of Von Willebrand Factor

    Get PDF
    The objective of this project was to study the function of O-glycosylations in von Willebrand factor (VWF) life cycle. In total, 14 different murine Vwf cDNAs mutated on one or several O-glycosylations sites were generated: 9 individual mutants, 2 doublets, 2 clusters and 1 mutant with all 9 murine glycosylation sites mutated (Del-O-Gly). We expressed each mutated cDNA in VWF deficient-mice by hydrodynamic injection. An immunosorbent assay with Peanut Agglutinin (PNA) was used to verify the O-glycosylation status. Wild-type (WT) VWF expressed by hepatocytes after hydrodynamic injection was able to bind PNA with slightly higher affinity than endothelial-derived VWF. In contrast, the Del-O-Gly VWF mutant did not bind PNA, demonstrating removal of O-linked glycans. All mutants displayed a normal multimeric pattern. Two mutants, Del-O-Gly and T1255A/T1256A, led to expression levels 50% lower than those induced by WT VWF and their half-life in vivo was significantly reduced. When testing the capacity of each mutant to correct the bleeding time of VWF-deficient mice, we found that S1486A, T1255A, T1256A and the doublet T1255A/T1256A were unable to do so. In conclusion we have shown that O-glycosylations are dispensable for normal VWF multimerization and biosynthesis. It also appears that some O-glycosylation sites, particularly the T1255 and T1256 residues, are involved in the maintenance of VWF plasma levels and are essential for normal haemostasis. As for the S1486 residue, it seems to be important for platelet binding as demonstrated in vitro using perfusion experiments

    Effect of pre-milking teat preparation procedures on the microbial count on teats prior to cluster application

    Get PDF
    A study was carried out to investigate the effect of six pre-milking teat preparation procedures on lowering the staphylococal, streptococcal and coliform microbial count on teat skin prior to cluster application. The teat preparations included 'Iodine', 'Chlorhexidine' teat foam, 'Washing and drying' with paper, 'No preparation', 'Chlorine' teat foam, and disinfectant 'Wipes'. Teat preparations were applied for five days to 10 cows for each treatment during two herd management periods (indoors and outdoors). Teats were swabbed on day four and five before teat preparation and repeated after teat preparation. The swabs were plated on three selective agars: Baird Parker (Staphylococcus spp.), Edwards (Streptococcus spp.), and MacConkey (coliform). Following incubation, microbial counts for each pathogen type were manually counted and assigned to one of six categories depending on the microbial counts measured. The results were analysed by logistic regression using SAS [28]. The main analysis was conducted on binary improvement scores for the swabbing outcomes. There were no differences for staphylococcal, streptococcal and coliform bacterial counts between treatments, measured 'before' teat preparation. Treatments containing 'Chlorhexidine' teat foam (OR = 4.46) and 'Wipes' (OR = 4.46) resulted in a significant reduction (P < 0.01) in the staphylococcal count on teats compared to 'Washing and drying' or 'No preparation'. 'Chlorine' teat foam (OR = 3.45) and 'Wipes' (3.45) had the highest probability (P < 0.01) of reducing streptococcal counts compared to 'Washing and drying' or 'No preparation'. There was no statistical difference between any of the disinfectant treatments applied in reducing coliforms. Thus, the use of some disinfectant products for pre-milking teat preparation can have beneficial effects on reducing the levels of staphylococcal and streptococcal pathogens on teat skin

    Ocean and land forcing of the record-breaking Dust Bowl heat waves across central United States

    Get PDF
    International audienceThe severe drought of the 1930s Dust Bowl decade coincided with record-breaking summer heatwaves that contributed to the socioeconomic and ecological disaster over North America's Great Plains. It remains unresolved to what extent these exceptional heatwaves, hotter than in historically forced coupled climate model simulations, were forced by sea surface temperatures (SSTs) and exacerbated through human-induced deterioration of land cover. Here we show, using an atmospheric-only model, that anomalously warm North Atlantic SSTs enhance heatwave activity through an association with drier spring conditions resulting from weaker moisture transport. Model devegetation simulations, that represent the widespread exposure of bare soil in the 1930s, suggest human activity fueled stronger and more frequent heatwaves through greater evaporative drying in the warmer months. This study highlights the potential for the amplification of naturally occurring extreme events like droughts by vegetation feedbacks to create more extreme heatwaves in a warmer world

    Mammalian Neurogenesis Requires Treacle-Plk1 for Precise Control of Spindle Orientation, Mitotic Progression, and Maintenance of Neural Progenitor Cells

    Get PDF
    The cerebral cortex is a specialized region of the brain that processes cognitive, motor, somatosensory, auditory, and visual functions. Its characteristic architecture and size is dependent upon the number of neurons generated during embryogenesis and has been postulated to be governed by symmetric versus asymmetric cell divisions, which mediate the balance between progenitor cell maintenance and neuron differentiation, respectively. The mechanistic importance of spindle orientation remains controversial, hence there is considerable interest in understanding how neural progenitor cell mitosis is controlled during neurogenesis. We discovered that Treacle, which is encoded by the Tcof1 gene, is a novel centrosome- and kinetochore-associated protein that is critical for spindle fidelity and mitotic progression. Tcof1/Treacle loss-of-function disrupts spindle orientation and cell cycle progression, which perturbs the maintenance, proliferation, and localization of neural progenitors during cortical neurogenesis. Consistent with this, Tcof1+/− mice exhibit reduced brain size as a consequence of defects in neural progenitor maintenance. We determined that Treacle elicits its effect via a direct interaction with Polo-like kinase1 (Plk1), and furthermore we discovered novel in vivo roles for Plk1 in governing mitotic progression and spindle orientation in the developing mammalian cortex. Increased asymmetric cell division, however, did not promote increased neuronal differentiation. Collectively our research has therefore identified Treacle and Plk1 as novel in vivo regulators of spindle fidelity, mitotic progression, and proliferation in the maintenance and localization of neural progenitor cells. Together, Treacle and Plk1 are critically required for proper cortical neurogenesis, which has important implications in the regulation of mammalian brain size and the pathogenesis of congenital neurodevelopmental disorders such as microcephaly
    • …
    corecore