82 research outputs found

    Separation of small metabolites and lipids in spectra from biopsies by diffusion-weighted HR-MAS NMR: a feasibility study.

    Get PDF
    High Resolution Magic Angle Spinning (HR-MAS) NMR allows metabolic characterization of biopsies. HR-MAS spectra from tissues of most organs show strong lipid contributions that are overlapping metabolite regions, which hamper metabolite estimation. Metabolite quantification and analysis would benefit from a separation of lipids and small metabolites. Generally, a relaxation filter is used to reduce lipid contributions. However, the strong relaxation filter required to eliminate most of the lipids also reduces the signals for small metabolites. The aim of our study was therefore to investigate different diffusion editing techniques in order to employ diffusion differences for separating lipid and small metabolite contributions in the spectra from different organs for unbiased metabonomic analysis. Thus, 1D and 2D diffusion measurements were performed, and pure lipid spectra that were obtained at strong diffusion weighting (DW) were subtracted from those obtained at low DW, which include both small metabolites and lipids. This subtraction yielded almost lipid free small metabolite spectra from muscle tissue. Further improved separation was obtained by combining a 1D diffusion sequence with a T2-filter, with the subtraction method eliminating residual lipids from the spectra. Similar results obtained for biopsies of different organs suggest that this method is applicable in various tissue types. The elimination of lipids from HR-MAS spectra and the resulting less biased assessment of small metabolites have potential to remove ambiguities in the interpretation of metabonomic results. This is demonstrated in a reproducibility study on biopsies from human muscle

    Comparing PVP and Polymeric Micellar Formulations of a PEGylated Photosensitizing Phthalocyanine by NMR and Optical Techniques.

    Get PDF
    Phthalocyanines are ideal candidates as photosensitizers for photodynamic therapy (PDT) of cancer due to their favorable chemical and photophysical properties. However, their tendency to form aggregates in water reduces PDT efficacy and poses challenges in obtaining efficient forms of phthalocyanines for therapeutic applications. In the current work, polyvinylpyrrolidone (PVP) and micellar formulations were compared for encapsulating and monomerizing a water-soluble zinc phthalocyanine bearing four non-peripheral triethylene glycol chains (Pc1). 1H NMR spectroscopy combined with UV-vis absorption and fluorescence spectroscopy revealed that Pc1 exists as a mixture of regioisomers in monomeric form in dimethyl sulfoxide but forms dimers in an aqueous buffer. PVP, polyethylene glycol castor oil (Kolliphor RH40), and three different triblock copolymers with varying proportions of polyethylene and polypropylene glycol units (termed P188, P84, and F127) were tested as micellar carriers for Pc1. 1H NMR chemical shift analysis, diffusion-ordered spectroscopy, and 2D nuclear Overhauser enhancement spectroscopy was applied to monitor the encapsulation and localization of Pc1 at the polymer interface. Kolliphor RH40 and F127 micelles exhibited the highest affinity for encapsulating Pc1 in the micellar core and resulted in intense Pc1 fluorescence emission as well as efficient singlet oxygen formation along with PVP. Among the triblock copolymers, efficiency in binding and dimer dissolution decreased in the order F127 > P84 > P188. PVP was a strong binder for Pc1. However, Pc1 molecules are rather surface-attached and exist as monomer and dimer mixtures. The results demonstrate that NMR combined with optical spectroscopy offer powerful tools to assess parameters like drug binding, localization sites, and dynamic properties that play key roles in achieving high host-guest compatibility. With the corresponding adjustments, polymeric micelles can offer simple and easily accessible drug delivery systems optimizing phthalocyanines' properties as efficient photosensitizers

    Comparing PVP and Polymeric Micellar Formulations of a PEGylated Photosensitizing Phthalocyanine by NMR and Optical Techniques

    Full text link
    Phthalocyanines are ideal candidates as photosensitizers for photodynamic therapy (PDT) of cancer due to their favorable chemical and photophysical properties. However, their tendency to form aggregates in water reduces PDT efficacy and poses challenges in obtaining efficient forms of phthalocyanines for therapeutic applications. In the current work, polyvinylpyrrolidone (PVP) and micellar formulations were compared for encapsulating and monomerizing a water-soluble zinc phthalocyanine bearing four non-peripheral triethylene glycol chains (Pc1). 1H NMR spectroscopy combined with UV–vis absorption and fluorescence spectroscopy revealed that Pc1 exists as a mixture of regioisomers in monomeric form in dimethyl sulfoxide but forms dimers in an aqueous buffer. PVP, polyethylene glycol castor oil (Kolliphor RH40), and three different triblock copolymers with varying proportions of polyethylene and polypropylene glycol units (termed P188, P84, and F127) were tested as micellar carriers for Pc1. 1H NMR chemical shift analysis, diffusion-ordered spectroscopy, and 2D nuclear Overhauser enhancement spectroscopy was applied to monitor the encapsulation and localization of Pc1 at the polymer interface. Kolliphor RH40 and F127 micelles exhibited the highest affinity for encapsulating Pc1 in the micellar core and resulted in intense Pc1 fluorescence emission as well as efficient singlet oxygen formation along with PVP. Among the triblock copolymers, efficiency in binding and dimer dissolution decreased in the order F127 > P84 > P188. PVP was a strong binder for Pc1. However, Pc1 molecules are rather surface-attached and exist as monomer and dimer mixtures. The results demonstrate that NMR combined with optical spectroscopy offer powerful tools to assess parameters like drug binding, localization sites, and dynamic properties that play key roles in achieving high host–guest compatibility. With the corresponding adjustments, polymeric micelles can offer simple and easily accessible drug delivery systems optimizing phthalocyanines’ properties as efficient photosensitizers

    Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study

    Get PDF
    Objectives: Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). Methods: In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. Results: In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. Conclusion: 28 d of beta-alanine supplementation at 6.4g d-1 appeared not to influence brain homocarnosine/ carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists

    Apparent diffusion coefficient restriction in the white matter: going beyond acute brain territorial ischemia

    Get PDF
    BACKGROUND: Reduction of apparent diffusion coefficient (ADC) values in white matter is not always ischaemic in nature. METHODS: We retrospectively analysed our MRI records featuring reduced ADC values in the centrum semiovale without grey matter involvement or significant vasogenic oedema. RESULTS: Several conditions showed the aforementioned MR findings: moose-horn lesions on coronal images in X-linked Charcot-Marie-Tooth disease; small fronto-parietal lesions in Menkes disease; marked signal abnormalities in the myelinised regions in the acute neonatal form of maple syrup urine disease; strip-like involvement of the corpus callosum in glutaric aciduria type 1; persistent periventricular parieto-occipital abnormalities in phenylketonuria; diffuse signal abnormalities with necrotic evolution in global cerebral anoxia or after heroin vapour inhalation; almost completely reversible symmetric fronto-parietal lesions in methotrexate neurotoxicity; chain-like lesions in watershed ischaemia; splenium involvement that normalises in reversible splenial lesions or leads to gliosis in diffuse axonal injury. CONCLUSION: Neuroradiologists must be familiar with these features, thereby preventing misdiagnosis and inappropriate management

    Widespread extrahippocampal NAA/(Cr+Cho) abnormalities in TLE with and without mesial temporal sclerosis

    Get PDF
    MR spectroscopy has demonstrated extrahippocampal NAA/(Cr+Cho) reductions in medial temporal lobe epilepsy with (TLE-MTS) and without (TLE-no) mesial temporal sclerosis. Because of the limited brain coverage of those previous studies, it was, however, not possible to assess differences in the distribution and extent of these abnormalities between TLE-MTS and TLE-no. This study used a 3D whole brain echoplanar spectroscopic imaging (EPSI) sequence to address the following questions: (1) Do TLE-MTS and TLE-no differ regarding severity and distribution of extrahippocampal NAA/(Cr+Cho) reductions? (2) Do extrahippocampal NAA/(Cr+Cho) reductions provide additional information for focus lateralization? Forty-three subjects (12 TLE-MTS, 13 TLE-no, 18 controls) were studied with 3D EPSI. Statistical parametric mapping (SPM2) was used to identify regions of significantly decreased NAA/(Cr+Cho) in TLE groups and in individual patients. TLE-MTS and TLE-no had widespread extrahippocampal NAA/(Cr+Cho) reductions. NAA/(Cr+Cho) reductions had a bilateral fronto-temporal distribution in TLE-MTS and a more diffuse, less well defined distribution in TLE-no. Extrahippocampal NAA/(Cr+Cho) decreases in the single subject analysis showed a large inter-individual variability and did not provide additional focus lateralizing information. Extrahippocampal NAA/(Cr+Cho) reductions in TLE-MTS and TLE-no are neither focal nor homogeneous. This reduces their value for focus lateralization and suggests a heterogeneous etiology of extrahippocampal spectroscopic metabolic abnormalities in TLE

    Pre-attentive processing in children with early and continuously-treated PKU. Effects of concurrent Phe level and lifetime dietary control

    Get PDF
    Sixty-four children, aged 7 to 14 years, with early-treated PKU, were compared with control children on visual evoked potential (VEP) amplitudes and latencies and auditory mismatch negativity (MMN) amplitudes. It was further investigated whether indices of dietary control would be associated with these evoked potentials parameters. There were no significant differences between controls and children with PKU in VEP- and MMN-indices. However, higher lifetime Phe levels were, in varying degree and stronger than concurrent Phe level, related to increased N75 amplitudes, suggesting abnormalities in attention, and longer P110 latencies, indicating a reduction in speed of neural processing, possibly due to deficits in myelination or reduced dopamine levels in brain and retina. Similarly, higher lifetime Phe levels and Index of Dietary Control (IDC) were associated with decreased MMN amplitudes, suggesting a reduced ability to respond to stimulus change and poorer triggering of the frontally mediated attention switch. In summary, the present study in children with PKU investigated bottom-up information processing, i.e., triggered by external events, a fundamental prerequisite for the individual’s responsiveness to the outside world. Results provide evidence that quality of dietary control may affect the optimal development of these pre-attentive processes, and suggest the existence of windows of vulnerability to Phe exposure

    Longitudinal investigation of the metabolome of 3D aggregating brain cell cultures at different maturation stages by <sup>1</sup>H HR-MAS NMR.

    No full text
    The aim of the present study was to establish the developmental profile of metabolic changes of 3D aggregating brain cell cultures by &lt;sup&gt;1&lt;/sup&gt; H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy. The histotypic 3D brain aggregate, containing all brain cell types, is an excellent model for mechanistic studies including OMICS analysis; however, their metabolic profile has not been yet fully investigated. Chemometric analysis revealed a clear separation of samples from the different maturation time points. Metabolite concentration evolutions could be followed and revealed strong and various metabolic alterations. The strong metabolite evolution emphasizes the brain modeling complexity during maturation, possibly reflecting physiological processes of brain tissue development. The small observed intra- and inter-experimental variabilities show the robustness of the combination of &lt;sup&gt;1&lt;/sup&gt; H-HR-MAS NMR and 3D brain aggregates, making it useful to investigate mechanisms of toxicity that will ultimately contribute to improve predictive neurotoxicology. Graphical Abstract ᅟ

    NMR spectroscopy detects metabolite differences between culture media of hepatitis C virus negative and positive cells after harvest

    No full text
    Introduction: Chronic infection with hepatitis C virus (HCV) is one of the main causes of hepatocellular carcinoma. Given the importance of glutamine in carcinogenesis, we investigated the role of glutaminolysis in HCV infection. Here we report on a NMR substudy investigating metabolite differences between cell culture supernatants of hepatitis C virus negative (HCV) and positive (HCV+) cells after harvest. Methods: HCV infected and uninfected cells were cultured in conditioned Dulbecco’s Modified Eagle’s Medium complemented with (1) additional Glucose and Glutamine, (2) void of Glutamine or (3) void of Glucose. Cells and supernatants were collected at days 3, 4, and 5 after addition of conditioned cell media. For each medium composition and time point, three HCV positive and three HCV negative cell cultures were harvested. Watersuppressed 1DNOESY spectra of 54 cell supernatants were acquired on a 400MHz Bruker AvanceII spectrometer at 298K. Spectra were bucketed and buckets from control culture media were subtracted from those of the supernatant spectra, and scaled to the number of cells at the harvest point. Results: A complete separation in PLSDA was obtained between cell media in contact with either HCV+ or HCVcells for all three media types. Moreover, the media separated further with increasing time post incubation. Two media separated also well between those in contact with HCV+ or HCVcells in unsupervised PCA. Loading plots demonstrated contributions from numerous metabolites responsible for the separation including glutamine and glutamate. Discussion: HCV infected cells appear to have different nutrition and excretion pathways compared to noninfected cells. Most importantly glutamine was reduced, while glutamate was increased in HCV+. These NMR results support complementary measurements demonstrating that HCV modulates the transcript levels of key enzymes of the glutamine metabolism in vitro and in liver biopsies of chronic HCV patients. Consistently, HCV infection increased glutamine utilization and dependence
    corecore