7,347 research outputs found

    Note on the Katzmayr effect on airfoil drag

    Get PDF
    The reduction of drag of an airfoil when the air stream is oscillating is called the Katzmayr effect. The purpose here is to offer a simple explanation of the cause of the Katzmayr effect

    A Fractional Variational Approach for Modelling Dissipative Mechanical Systems: Continuous and Discrete Settings

    Full text link
    Employing a phase space which includes the (Riemann-Liouville) fractional derivative of curves evolving on real space, we develop a restricted variational principle for Lagrangian systems yielding the so-called restricted fractional Euler-Lagrange equations (both in the continuous and discrete settings), which, as we show, are invariant under linear change of variables. This principle relies on a particular restriction upon the admissible variation of the curves. In the case of the half-derivative and mechanical Lagrangians, i.e. kinetic minus potential energy, the restricted fractional Euler-Lagrange equations model a dissipative system in both directions of time, summing up to a set of equations that is invariant under time reversal. Finally, we show that the discrete equations are a meaningful discretisation of the continuous ones.Comment: Key words: Variational analysis, Mechanical systems, Lagrangian mechanics, Damping, Fractional derivatives, Discretisation, Variational integrators. 13 pages, no figures. Contributed paper to 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Contro

    On Patterns of Multi-domain Interaction for Scientific Software Development focused on Separation of Concerns

    Get PDF
    This year’s ICCS conference theme promotes the use of computational science as a means to foster multidisciplinarity and synergies with other fields. Our thesis is that this trend towards multidisciplinarity should be accompanied by the use of best practices issued from the software engineering community in order to avoid obtaining overly complex and tangled code, difficult to validate, to maintain and to port. In this paper we argue for the need of applying separation of concerns principles when the development involves scientists from various application fields. We overview several strategies that may be used to achieve this separation, focusing mainly on two approaches drawn from our previous experiences with multidisciplinary projects, addressing two distinct patterns of multi-domain interaction that may occur in scientific software development

    Canonical lossless state-space systems: Staircase forms and the Schur algorithm

    Get PDF
    A new finite atlas of overlapping balanced canonical forms for multivariate discrete-time lossless systems is presented. The canonical forms have the property that the controllability matrix is positive upper triangular up to a suitable permutation of its columns. This is a generalization of a similar balanced canonical form for continuous-time lossless systems. It is shown that this atlas is in fact a finite sub-atlas of the infinite atlas of overlapping balanced canonical forms for lossless systems that is associated with the tangential Schur algorithm; such canonical forms satisfy certain interpolation conditions on a corresponding sequence of lossless transfer matrices. The connection between these balanced canonical forms for lossless systems and the tangential Schur algorithm for lossless systems is a generalization of the same connection in the SISO case that was noted before. The results are directly applicable to obtain a finite sub-atlas of multivariate input-normal canonical forms for stable linear systems of given fixed order, which is minimal in the sense that no chart can be left out of the atlas without losing the property that the atlas covers the manifold
    • …
    corecore