568 research outputs found

    Recovery of graphite and cathode active materials from spent lithium-ion batteries by applying two pretreatment methods and flotation combined with a rapid analysis technique

    Get PDF
    This work investigates the comprehensive recycling of graphite and cathode active materials (LiNi0.6Mn0.2Co0.2O2, abbreviated as NMC) from spent lithium-ion batteries via pretreatment and flotation. Specific analytical methods (SPME-GC-MS and Py-GC-MS) were utilized to identify and trace the relevant influencing factors. Two different pretreatment methods, which are Fenton oxidation and roasting, were investigated with respect to their influence on the flotation effectiveness. As a result, for NMC cathode active materials, a recovery of 90% and a maximum grade of 83% were obtained by the optimized roasting and flotation. Meanwhile, a graphite grade of 77% in the froth product was achieved, with a graphite recovery of 75%. By using SPME-GC-MS and Py-GC-MS analyses, it could be shown that, in an optimized process, an effective destruction/removal of the electrolyte and binder residues can be reached. The applied analytical tools could be integrated into the workflow, which enabled process control in terms of the pretreatment sufficiency and achievable separation in the subsequent flotation

    Optical properties of coated black carbon aggregates: numerical simulations, radiative forcing estimates, and size-resolved parameterization scheme

    Get PDF
    The formation of black carbon fractal aggregates (BCFAs) from combustion and subsequent ageing involves several stages resulting in modifications of particle size, morphology, and composition over time. To understand and quantify how each of these modifications influences the BC radiative forcing, the optical properties of BCFAs are modelled. Owing to the high computational time involved in numerical modelling, there are some gaps in terms of data coverage and knowledge regarding how optical properties of coated BCFAs vary over the range of different factors (size, shape, and composition). This investigation bridged those gaps by following a state-of-the-art description scheme of BCFAs based on morphology, composition, and wavelength. The BCFA optical properties were investigated as a function of the radius of the primary particle (ao), fractal dimension (Df), fraction of organics (forganics), wavelength (λ), and mobility diameter (Dmob). The optical properties are calculated using the multiple-sphere T-matrix (MSTM) method. For the first time, the modelled optical properties of BC are expressed in terms of mobility diameter (Dmob), making the results more relevant and relatable for ambient and laboratory BC studies. Amongst size, morphology, and composition, all the optical properties showed the highest variability with changing size. The cross sections varied from 0.0001 to 0.1 ÎŒm2 for BCFA Dmob ranging from 24 to 810nm. It has been shown that MACBC and single-scattering albedo (SSA) are sensitive to morphology, especially for larger particles with Dmobg > 100 nm. Therefore, while using the simplified core-shell representation of BC in global models, the influence of morphology on radiative forcing estimations might not be adequately considered. The Ångström absorption exponent (AAE) varied from 1.06 up to 3.6 and increased with the fraction of organics (forganics). Measurement results of AAE ≫1 are often misinterpreted as biomass burning aerosol, it was observed that the AAE of purely black carbon particles can be ≫1 in the case of larger BC particles. The values of the absorption enhancement factor (Eλ) via coating were found to be between 1.01 and 3.28 in the visible spectrum. The Eλ was derived from Mie calculations for coated volume equivalent spheres and from MSTM for coated BCFAs. Mie-calculated enhancement factors were found to be larger by a factor of 1.1 to 1.5 than their corresponding values calculated from the MSTM method. It is shown that radiative forcings are highly sensitive to modifications in morphology and composition. The black carbon radiative forcing FTOA (Wgm-2) decreases up to 61% as the BCFA becomes more compact, indicating that global model calculations should account for changes in morphology. A decrease of more than 50% in FTOA was observed as the organic content of the particle increased up to 90%. The changes in the ageing factors (composition and morphology) in tandem result in an overall decrease in the FTOA. A parameterization scheme for optical properties of BC fractal aggregates was developed, which is applicable for modelling, ambient, and laboratory-based BC studies. The parameterization scheme for the cross sections (extinction, absorption, and scattering), single-scattering albedo (SSA), and asymmetry parameter (g) of pure and coated BCFAs as a function of Dmob were derived from tabulated results of the MSTM method. Spanning an extensive parameter space, the developed parameterization scheme showed promisingly high accuracy up to 98% for the cross sections, 97% for single-scattering albedos (SSAs), and 82% for the asymmetry parameter (g). © 2021 The Author(s)

    EPIC 219388192 b - an inhabitant of the brown dwarf desert in the Ruprecht 147 open cluster

    Get PDF
    We report the discovery of EPIC 219388192 b, a transiting brown dwarf in a 5.3-day orbit around a member star of Ruprecht-147, the oldest nearby open cluster association, which was photometrically monitored by K2 during its Campaign 7. We combine the K2 time-series data with ground-based adaptive optics imaging and high resolution spectroscopy to rule out false positive scenarios and determine the main parameters of the system. EPIC 219388192 b has a radius of RbR_\mathrm{b}=0.937±0.0420.937\pm0.042~RJup\mathrm{R_{Jup}} and mass of MbM_\mathrm{b}=36.50±0.0936.50\pm0.09~MJup\mathrm{M_{Jup}}, yielding a mean density of 59.0±8.159.0\pm8.1~g cm−3\mathrm{g\,cm^{-3}}. The host star is nearly a Solar twin with mass M⋆M_\star=0.99±0.050.99\pm0.05~M⊙\mathrm{M_{\odot}}, radius R⋆R_\star=1.01±0.041.01\pm0.04~R⊙\mathrm{R_{\odot}}, effective temperature Teff\mathrm{T_{eff}}=5850±855850\pm85~K and iron abundance [Fe/H]=0.03±0.080.03\pm0.08~dex. Its age, spectroscopic distance, and reddening are consistent with those of Ruprecht-147, corroborating its cluster membership. EPIC 219388192 b is the first brown dwarf with precise determinations of mass, radius and age, and serves as benchmark for evolutionary models in the sub-stellar regime.Comment: 13 pages, 11 figures, 4 tables, submitted to AAS Journal

    Three Small Planets Transiting a Hyades Star

    Get PDF
    We present the discovery of three small planets transiting K2-136 (LP 358 348, EPIC 247589423), a late K dwarf in the Hyades. The planets have orbital periods of 7.9757±0.00117.9757 \pm 0.0011, 17.30681−0.00036+0.0003417.30681^{+0.00034}_{-0.00036}, and 25.5715−0.0040+0.003825.5715^{+0.0038}_{-0.0040} days, and radii of 1.05±0.161.05 \pm 0.16, 3.14±0.363.14 \pm 0.36, and 1.55−0.21+0.241.55^{+0.24}_{-0.21} R⊕R_\oplus, respectively. With an age of 600-800 Myr, these planets are some of the smallest and youngest transiting planets known. Due to the relatively bright (J=9.1) host star, the planets are compelling targets for future characterization via radial velocity mass measurements and transmission spectroscopy. As the first known star with multiple transiting planets in a cluster, the system should be helpful for testing theories of planet formation and migration.Comment: Accepted to The Astronomical Journa

    Exoplanets around Low-mass Stars Unveiled by K2

    Get PDF
    We present the detection and follow-up observations of planetary candidates around low-mass stars observed by the K2 mission. Based on light-curve analysis, adaptive-optics imaging, and optical spectroscopy at low and high resolution (including radial velocity measurements), we validate 16 planets around 12 low-mass stars observed during K2 campaigns 5-10. Among the 16 planets, 12 are newly validated, with orbital periods ranging from 0.96-33 days. For one of the planets (K2-151b) we present ground-based transit photometry, allowing us to refine the ephemerides. Combining our K2 M-dwarf planets together with the validated or confirmed planets found previously, we investigate the dependence of planet radius RpR_p on stellar insolation and metallicity [Fe/H]. We confirm that for periods Pâ‰Č2P\lesssim 2 days, planets with a radius Rp≳2 R⊕R_p\gtrsim 2\,R_\oplus are less common than planets with a radius between 1-2 R⊕\,R_\oplus. We also see a hint of the "radius valley" between 1.5 and 2 R⊕\,R_\oplus that has been seen for close-in planets around FGK stars. These features in the radius/period distribution could be attributed to photoevaporation of planetary envelopes by high-energy photons from the host star, as they have for FGK stars. For the M dwarfs, though, the features are not as well defined, and we cannot rule out other explanations such as atmospheric loss from internal planetary heat sources, or truncation of the protoplanetary disk. There also appears to be a relation between planet size and metallicity: those few planets larger than about 3 R⊕R_\oplus are found around the most metal-rich M dwarfs.Comment: 29 pages, 21 figures, 6 tables, Accepted in Astronomical Journa

    The transiting multi-planet system HD3167: a 5.7 MEarth Super-Earth and a 8.3 MEarth mini-Neptune

    Get PDF
    HD3167 is a bright (V=8.9 mag) K0V star observed by the NASA's K2 space mission during its Campaign 8. It has been recently found to host two small transiting planets, namely, HD3167b, an ultra short period (0.96 d) super-Earth, and HD3167c, a mini-Neptune on a relatively long-period orbit (29.85 d). Here we present an intensive radial velocity follow-up of HD3167 performed with the FIES@NOT, [email protected], and HARPS-N@TNG spectrographs. We revise the system parameters and determine radii, masses, and densities of the two transiting planets by combining the K2 photometry with our spectroscopic data. With a mass of 5.69+/-0.44 MEarth, radius of 1.574+/-0.054 REarth, and mean density of 8.00(+1.0)(-0.98) g/cm^3, HD3167b joins the small group of ultra-short period planets known to have a rocky terrestrial composition. HD3167c has a mass of 8.33 (+1.79)(-1.85) MEarth and a radius of 2.740(+0.106)(-0.100) REarth, yielding a mean density of 2.21(+0.56)(-0.53) g/cm^3, indicative of a planet with a composition comprising a solid core surrounded by a thick atmospheric envelope. The rather large pressure scale height (about 350 km) and the brightness of the host star make HD3167c an ideal target for atmospheric characterization via transmission spectroscopy across a broad range of wavelengths. We found evidence of additional signals in the radial velocity measurements but the currently available data set does not allow us to draw any firm conclusion on the origin of the observed variation.Comment: 18 pages, 11 figures, 5 table

    Functional analysis of structural variants in single cells using Strand-seq

    Full text link
    Somatic structural variants (SVs) are widespread in cancer, but their impact on disease evolution is understudied due to a lack of methods to directly characterize their functional consequences. We present a computational method, scNOVA, which uses Strand-seq to perform haplotype-aware integration of SV discovery and molecular phenotyping in single cells by using nucleosome occupancy to infer gene expression as a readout. Application to leukemias and cell lines identifies local effects of copy-balanced rearrangements on gene deregulation, and consequences of SVs on aberrant signaling pathways in subclones. We discovered distinct SV subclones with dysregulated Wnt signaling in a chronic lymphocytic leukemia patient. We further uncovered the consequences of subclonal chromothripsis in T cell acute lymphoblastic leukemia, which revealed c-Myb activation, enrichment of a primitive cell state and informed successful targeting of the subclone in cell culture, using a Notch inhibitor. By directly linking SVs to their functional effects, scNOVA enables systematic single-cell multiomic studies of structural variation in heterogeneous cell populations
    • 

    corecore