20 research outputs found

    Distinction of Nuclear Spin States with the Scanning Tunneling Microscope

    Get PDF
    We demonstrate rotational excitation spectroscopy with the scanning tunneling microscope for physisorbed hydrogen and its isotopes hydrogen-deuterid and deuterium. The observed excitation energies are very close to the gas phase values and show the expected scaling with moment of inertia. Since these energies are characteristic for the molecular nuclear spin states we are able to identify the para and ortho species of hydrogen and deuterium, respectively. We thereby demonstrate nuclear spin sensitivity with unprecedented spatial resolution

    Rotational Excitation Spectroscopy with the STM through Molecular Resonances

    Get PDF
    We investigate the rotational properties of molecular hydrogen and its isotopes physisorbed on the surfaces of graphene and hexagonal boron nitride (hh-BN), grown on Ni(111), Ru(0001), and Rh(111), using rotational excitation spectroscopy (RES) with the scanning tunneling microscope. The rotational thresholds are in good agreement with ΔJ=2\Delta J=2 transitions of freely spinning para-H2_2 and ortho-D2_2 molecules. The line shape variations in RES for H2_2 among the different surfaces can be traced back and naturally explained by a resonance mediated tunneling mechanism. RES data for H2_2/hh-BN/Rh(111) suggests a local intrinsic gating on this surface due to lateral variations in the surface potential. An RES inspection of H2_2, HD, and D2_2 mixtures finally points to a multi molecule excitation, since either of the three J=0→2J=0\rightarrow2 rotational transitions are simultaneously present, irrespective of where the spectra were recorded in the mixed monolayer

    Sparse sampling for fast quasiparticle-interference mapping

    Full text link
    Scanning tunneling microscopy (STM) is a notoriously slow technique; data-recording is serial, which renders complex measurement tasks, such as quasiparticle interference (QPI) mapping, impractical. However, QPI could provide insight into band-structure details of quantum materials that can be inaccessible to angle-resolved photoemission spectroscopy. Here we use compressed sensing (CS) to fundamentally speed-up QPI mapping. We reliably recover the QPI information from a fraction of the usual local density of state measurements. The requirement of CS is naturally fulfilled for QPI, since CS relies on sparsity in a vector domain, here given by few nonzero coefficients in Fourier space. We exemplify CS on a simulated Cu(111) surface using random sampling of uniform and varying probability density. The latter improves QPI recovery and mitigates Fourier artifacts. We further simplify the motion of the STM tip through an open traveling salesman's problem for greater efficiency and use the tip-path for drift correction. We expect that the implications of our CS approach will be transformative for the exploration of two-dimensional quantum materials

    Thermal and magnetic field stability of holmium single atom magnets

    Get PDF
    We use spin-polarized scanning tunneling microscopy to demonstrate that Ho atoms on magnesium oxide exhibit a coercive field of more than 8 T and magnetic bistability for many minutes, both at 35 K. The first spontaneous magnetization reversal events are recorded at 45 K for which the metastable state relaxes in an external field of 8 T. The transverse magnetic anisotropy energy is estimated from magnetic field and bias voltage dependent switching rates at 4.3 K. Our measurements constrain the possible ground state of Ho single atom magnets to either Jz = 7 or 8, both compatible with magnetic bistability at fields larger than 10 mT.Comment: 4 pages and supplemental informatio

    Adaptive sparse sampling for quasiparticle interference imaging

    Full text link
    Quasiparticle interference imaging (QPI) offers insight into the band structure of quantum materials from the Fourier transform of local density of states (LDOS) maps. Their acquisition with a scanning tunneling microscope is traditionally tedious due to the large number of required measurements that may take several days to complete. The recent demonstration of sparse sampling for QPI imaging showed how the effective measurement time could be fundamentally reduced by only sampling a small and random subset of the total LDOS. However, the amount of required sub-sampling to faithfully recover the QPI image remained a recurring question. Here we introduce an adaptive sparse sampling (ASS) approach in which we gradually accumulate sparsely sampled LDOS measurements until a desired quality level is achieved via compressive sensing recovery. The iteratively measured random subset of the LDOS can be interleaved with regular topographic images that are used for image registry and drift correction. These reference topographies also allow to resume interrupted measurements to further improve the QPI quality. Our ASS approach is a convenient extension to quasiparticle interference imaging that should remove further hesitation in the implementation of sparse sampling mapping schemes

    Adaptive Sparse Sampling for Quasiparticle Interference Imaging

    Full text link
    Quasiparticle interference imaging (QPI) offers insight into the band structure of quantum materials from the Fourier transform of local density of states (LDOS) maps. Their acquisition with a scanning tunneling microscope is traditionally tedious due to the large number of required measurements that may take several days to complete. The recent demonstration of sparse sampling for QPI imaging showed how the effective measurement time could be fundamentally reduced by only sampling a small and random subset of the total LDOS. However, the amount of required sub-sampling to faithfully recover the QPI image remained a recurring question. Here we introduce an adaptive sparse sampling (ASS) approach in which we gradually accumulate sparsely sampled LDOS measurements until a desired quality level is achieved via compressive sensing recovery. The iteratively measured random subset of the LDOS can be interleaved with regular topographic images that are used for image registry and drift correction. These reference topographies also allow to resume interrupted measurements to further improve the QPI quality. Our ASS approach is a convenient extension to quasiparticle interference imaging that should remove further hesitation in the implementation of sparse sampling mapping schemes.Comment: 10 pages, 5 figure

    A quantum pathway to overcome the trilemma of magnetic data storage

    Full text link
    The three essential pillars of magnetic data storage devices are readability, writeability, and stability. However, these requirements compete as magnetic domain sizes reach the fundamental limit of single atoms and molecules. The proven magnetic bistability of individual holmium atoms on magnesium oxide appeared to operate within this magnetic trilemma, sacrificing writeability for unprecedented stability. Using the magnetic stray field created by the tip of a spin-polarized scanning tunneling microscope (SP-STM), we controllably move the Ho state into the quantum regime, allowing us to write its state via the quantum tunneling of magnetization (QTM). We find that the hyperfine interaction causes both the excellent magnetic bistability, even at zero applied magnetic field, and the avoided level crossings which we use to control the magnetic state via QTM. We explore how to use such a system to realize a high-fidelity single atom NOT gate (inverter). Our approach reveals the prospect of combining the best traits of the classical and quantum worlds for next generation data storage
    corecore