16 research outputs found

    Timely Detection of SARS-CoV-2 in Limited Resource Settings: The Role of the Laboratory in Zimbabwe

    Get PDF
    The recommended approach for response to severe acute respiratory syndrome coronavirus 2, was to test to enable timely detection, isolation and contact tracing so as to reduce the rapid spread of the disease. This highlighted that the laboratory as one of the core capacities of the International Health Regulations and key technical area in the International Health Security was critical in curbing the spread of the virus. Zimbabwe embarked on testing for SARS-CoV-2 in February 2020 following the guidance and support from WHO leveraging the existing testing capacity. Testing was guided by a laboratory pillar which constituted members from different organizations partnering with the Ministry of Health and Child Care. SARS-CoV-2 testing expansion was based on a phased approach using a tiered system in which laboratory staff from lower tiers were seconded to test for coronavirus using RT-PCR with National Microbiology Reference Laboratory (NMRL) being the hub for centralized consolidation of all results. As the pandemic grew nationally, there was an increase in testing per day and reduction in turnaround time as five laboratories were fully capacitated to test using RT-PCR open platforms, thirty-three provincial and district laboratories to test using TB GeneXpert and 5 provincial laboratories to use Abbott platforms

    Variants of IL6, IL10, FCN2, RNASE3, IL12B and IL17B loci are associated with Schistosoma mansoni worm burden in the Albert Nile region of Uganda

    Get PDF
    Background: Individuals genetically susceptible to high schistosomiasis worm burden may contribute disproportionately to transmission and could be prioritized for control. Identifying genes involved may guide development of therapy. // Methodology/Principal findings: A cohort of 606 children aged 10–15 years were recruited in the Albert Nile region of Uganda and assessed for Schistosoma mansoni worm burden using the Up-Converting Particle Lateral Flow (UCP-LF) test detecting circulating anodic antigen (CAA), point-of-care Circulating Cathodic Antigen (POC-CCA) and Kato-Katz tests. Whole genome genotyping was conducted on 326 children comprising the top and bottom 25% of worm burden. Linear models were fitted to identify variants associated with worm burden in preselected candidate genes. Expression quantitative trait locus (eQTL) analysis was conducted for candidate genes with UCP-LF worm burden included as a covariate. Single Nucleotide Polymorphism loci associated with UCP-LF CAA included IL6 rs2066992 (OR = 0.43, p = 0.0006) and rs7793163 (OR = 2.0, p = 0.0007); IL21 SNP kgp513476 (OR 1.79, p = 0.0025) and IL17B SNP kgp708159 (OR = 0.35, p = 0.0028). A haplotype in the IL10 locus was associated with lower worm burden (OR = 0.53, p = 0.015) and overlapped SNPs rs1800896, rs1800871 and rs1800872. Significant haplotypes (p<0.05, overlapping significant SNP) associated with worm burden were observed in IL6 and the Th17 pathway IL12B and IL17B genes. There were significant eQTL in the IL6, IL5, IL21, IL25 and IFNG regions. // Conclusions: Variants associated with S. mansoni worm burden were in IL6, FCN2, RNASE3, IL10, IL12B and IL17B gene loci. However only eQTL associations remained significant after Bonferroni correction. In summary, immune balance, pathogen recognition and Th17 pathways may play a role in modulating Schistosoma worm burden. Individuals carrying risk variants may be targeted first in allocation of control efforts to reduce the burden of schistosomiasis in the community

    Candidate gene family-based and case-control studies of susceptibility to high Schistosoma mansoni worm burden in African children: a protocol

    Get PDF
    Background: Approximately 25% of the risk of Schistosoma mansoni is associated with host genetic variation. We will test 24 candidate genes, mainly in the Th2 and Th17 pathways, for association with S. mansoni infection intensity in four African countries, using family based and case-control approaches. Methods: Children aged 5-15 years will be recruited in S. mansoni endemic areas of Ivory Coast, Cameroon, Uganda and the Democratic Republic of Congo (DRC). We will use family based (study 1) and case-control (study 2) designs. Study 1 will take place in Ivory Coast, Cameroon, Uganda and the DRC. We aim to recruit 100 high worm burden families from each country except Uganda, where a previous study recruited at least 40 families. For phenotyping, cases will be defined as the 20% of children in each community with heaviest worm burdens as measured by the circulating cathodic antigen (CCA) assay. Study 2 will take place in Uganda. We will recruit 500 children in a highly endemic community. For phenotyping, cases will be defined as the 20% of children with heaviest worm burdens as measured by the CAA assay, while controls will be the 20% of infected children with the lightest worm burdens. Deoxyribonucleic acid (DNA) will be genotyped on the Illumina H3Africa SNP (single nucleotide polymorphisms) chip and genotypes will be converted to sets of haplotypes that span the gene region for analysis. We have selected 24 genes for genotyping that are mainly in the Th2 and Th17 pathways and that have variants that have been demonstrated to be or could be associated with Schistosoma infection intensity. Analysis: In the family-based design, we will identify SNP haplotypes disproportionately transmitted to children with high worm burden. Case-control analysis will detect overrepresentation of haplotypes in extreme phenotypes with correction for relatedness by using whole genome principal components

    Transcriptome analysis of peripheral blood of Schistosoma mansoni infected children from the Albert Nile region in Uganda reveals genes implicated in fibrosis pathology.

    Get PDF
    Over 290 million people are infected by schistosomes worldwide. Schistosomiasis control efforts focus on mass drug treatment with praziquantel (PZQ), a drug that kills the adult worm of all Schistosoma species. Nonetheless, re-infections have continued to be detected in endemic areas with individuals living in the same area presenting with varying infection intensities. Our objective was to characterize the transcriptome profiles in peripheral blood of children between 10-15 years with varying intensities of Schistosoma mansoni infection living along the Albert Nile in Uganda. RNA extracted from peripheral blood collected from 44 S. mansoni infected (34 high and 10 low by circulating anodic antigen [CAA] level) and 20 uninfected children was sequenced using Illumina NovaSeq S4 and the reads aligned to the GRCh38 human genome. Differential gene expression analysis was done using DESeq2. Principal component analysis revealed clustering of gene expression by gender when S. mansoni infected children were compared with uninfected children. In addition, we identified 14 DEGs between S. mansoni infected and uninfected individuals, 56 DEGs between children with high infection intensity and uninfected individuals, 33 DEGs between those with high infection intensity and low infection intensity and no DEGs between those with low infection and uninfected individuals. We also observed upregulation and downregulation of some DEGs that are associated with fibrosis and its regulation. These data suggest expression of fibrosis associated genes as well as genes that regulate fibrosis in S. mansoni infection. The relatively few significant DEGS observed in children with schistosomiasis suggests that chronic S. mansoni infection is a stealth infection that does not stimulate a strong immune response

    Results from the second WHO external quality assessment for the molecular detection of respiratory syncytial virus, 2019-2020

    Get PDF
    BACKGROUND: External quality assessments (EQAs) for the molecular detection of human respiratory syncytial virus (RSV) are necessary to ensure the standardisation of reliable results. The Phase II, 2019-2020 World Health Organization (WHO) RSV EQA included 28 laboratories in 26 countries. The EQA panel evaluated performance in the molecular detection and subtyping of RSV-A and RSV-B. This manuscript describes the preparation, distribution, and analysis of the 2019-2020 WHO RSV EQA. METHODS: Panel isolates underwent whole genome sequencing and in silico primer matching. The final panel included nine contemporary, one historical virus and two negative controls. The EQA panel was manufactured and distributed by the UK National External Quality Assessment Service (UK NEQAS). National laboratories used WHO reference assays developed by the United States Centers for Disease Control and Prevention, an RSV subtyping assay developed by the Victorian Infectious Diseases Reference Laboratory (Australia), or other in-house or commercial assays already in use at their laboratories. RESULTS: An in silico analysis of isolates showed a good match to assay primer/probes. The panel was distributed to 28 laboratories. Isolates were correctly identified in 98% of samples for detection and 99.6% for subtyping. CONCLUSIONS: The WHO RSV EQA 2019-2020 showed that laboratories performed at high standards. Updating the composition of RSV molecular EQAs with contemporary strains to ensure representation of circulating strains, and ensuring primer matching with EQA panel viruses, is advantageous in assessing diagnostic competencies of laboratories. Ongoing EQAs are recommended because of continued evolution of mismatches between current circulating strains and existing primer sets

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.

    Get PDF
    The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Differences in gene expression profiles in early and late stage rhodesiense HAT individuals in Malawi.

    Get PDF
    T. b. rhodesiense is the causative agent of Rhodesian human African trypanosomiasis (r-HAT) in Malawi. Clinical presentation of r-HAT in Malawi varies between foci and differs from East African HAT clinical phenotypes. The purpose of this study was to gain more insights into the transcriptomic profiles of patients with early stage 1 and late stage 2 HAT disease in Malawi. Whole blood from individuals infected with T. b. rhodesiense was used for RNA-Seq. Control samples were from healthy trypanosome negative individuals matched on sex, age range, and disease foci. Illumina sequence FASTQ reads were aligned to the GRCh38 release 84 human genome sequence using HiSat2 and differential analysis was done in R Studio using the DESeq2 package. XGR, ExpressAnalyst and InnateDB algorithms were used for functional annotation and gene enrichment analysis of significant differentially expressed genes. RNA-seq was done on 23 r-HAT case samples and 28 healthy controls with 7 controls excluded for downstream analysis as outliers. A total of 4519 genes were significant differentially expressed (p adjusted <0.05) in individuals with early stage 1 r-HAT disease (n = 12) and 1824 genes in individuals with late stage 2 r-HAT disease (n = 11) compared to controls. Enrichment of innate immune response genes through neutrophil activation was identified in individuals with both early and late stages of the disease. Additionally, lipid metabolism genes were enriched in late stage 2 disease. We further identified uniquely upregulated genes (log2 Fold Change 1.4-2.0) in stage 1 (ZNF354C) and stage 2 (TCN1 and MAGI3) blood. Our data add to the current understanding of the human transcriptome profiles during T. b. rhodesiense infection. We further identified biological pathways and transcripts enriched than were enriched during stage 1 and stage 2 r-HAT. Lastly, we have identified transcripts which should be explored in future research whether they have potential of being used in combination with other markers for staging or r-HAT
    corecore