1,717 research outputs found

    Five-dimensional AGT Conjecture and the Deformed Virasoro Algebra

    Full text link
    We study an analog of the AGT relation in five dimensions. We conjecture that the instanton partition function of 5D N=1 pure SU(2) gauge theory coincides with the inner product of the Gaiotto-like state in the deformed Virasoro algebra. In four dimensional case, a relation between the Gaiotto construction and the theory of Braverman and Etingof is also discussed.Comment: 12 pages, reference added, minor corrections (typos, notation changes, etc

    Heterozygosity increases microsatellite mutation rate, linking it to demographic history

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biochemical experiments in yeast suggest a possible mechanism that would cause heterozygous sites to mutate faster than equivalent homozygous sites. If such a process operates, it could undermine a key assumption at the core of population genetic theory, namely that mutation rate and population size are indpendent, because population expansion would increase heterozygosity that in turn would increase mutation rate. Here we test this hypothesis using both direct counting of microsatellite mutations in human pedigrees and an analysis of the relationship between microsatellite length and patterns of demographically-induced variation in heterozygosity.</p> <p>Results</p> <p>We find that microsatellite alleles of any given length are more likely to mutate when their homologue is unusually different in length. Furthermore, microsatellite lengths in human populations do not vary randomly, but instead exhibit highly predictable trends with both distance from Africa, a surrogate measure of genome-wide heterozygosity, and modern population size. This predictability remains even after statistically controlling for non-independence due to shared ancestry among populations.</p> <p>Conclusion</p> <p>Our results reveal patterns that are unexpected under classical population genetic theory, where no mechanism exists capable of linking allele length to extrinsic variables such as geography or population size. However, the predictability of microsatellite length is consistent with heterozygote instability and suggest that this has an important impact on microsatellite evolution. Whether similar processes impact on single nucleotide polymorphisms remains unclear.</p

    Transforming growth factor beta-1 (TGFB1) and peak bone mass: association between intragenic polymorphisms and quantitative ultrasound of the heel

    Get PDF
    BACKGROUND: Variance of peak bone mass has a substantial genetic component, as has been shown with twin studies examining quantitative measures such as bone mineral density (BMD) and quantitative ultrasound (QUS). Evidence implicating single nucleotide polymorphisms (SNPs) of the transforming growth factor beta-1 (TGFB1) gene is steadily accumulating. However, a comprehensive look at multiple SNPs at this locus for their association with indices of peak bone mass has not been reported. METHODS: A cohort of 653 healthy Caucasian females 18 to 35 years old was genotyped for seven TGFB1 SNPs. Polymorphisms were detected by restriction endonuclease digestion of amplified DNA segments. RESULTS: The frequencies of the least common allele at G-800A, C-509T, codon 10 (L10P), codon 25 (R25P), codon 263 (T263I), C861-20T, and 713-8 delC loci were 0.07, 0.33, 0.41, 0.08, 0.04, 0.25 and 0.01, respectively. A significant association was seen between QUS Stiffness Index (QUS-SI) and the SNP at codon 10 and the linked promoter SNP, C-509T. This association remained significant after multiple regression was used to incorporate important clinical covariates – age, BMI, level of activity, family history, and caffeine intake – into the model. CONCLUSION: The association of QUS-SI with -509T is consistent with a gene-dose effect, while only individuals homozygous for the codon 10P allele showed a significant increase. In this cohort of young healthy Caucasian females, the T allele at position -509 is associated with greater bone mass as measured by calcaneal ultrasound

    Effects of the Molecular Weight and the Degree of Deacetylation of Chitosan Oligosaccharides on Antitumor Activity

    Get PDF
    Effects of the degree of deacetylation (DDA) and the molecular mass of chitosan oligosaccharides (CTS-OS), obtained from the enzymatic hydrolysis of high molecular weight chitosan (HMWC), on antitumor activity was explored. The DDA and molecular weights of CTS-OS were determined by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-TOF MS) analysis. The CTS-OS were found to be a mixture of mainly dimers (18.8%), trimers (24.8%), tetramers (24.9%), pentamers (17.7%), hexamers (7.1%), heptamers (3.3%), and octamers (3.4%). The CTS-OS were further fractionated by gel-filtration chromatography into two major fractions: (1) COS, consisting of glucosamine (GlcN)n, n = 3–5 with DDA 100%; and (2) HOS, consisting of (GlcN)5 as the minimum residues and varying number of N-acetylglucosamine (GlcNAc)n, n = 1–2 with DDA about 87.5% in random order. The cytotoxicities, expressed as the concentration needed for 50% cell death (CC50), of CTS-OS, COS, and HOS against PC3 (prostate cancer cell), A549 (lung cancer cell), and HepG2 (hepatoma cell), were determined to be 25 μg·mL−1, 25 μg·mL−1, and 50 μg·mL−1, respectively. The HMWC was approximately 50% less effective than both CTS-OS and COS. These results demonstrate that the molecular weight and DDA of chitosan oligosaccharides are important factors for suppressing cancer cell growth

    Generalized matrix models and AGT correspondence at all genera

    Get PDF
    We study generalized matrix models corresponding to n-point Virasoro conformal blocks on Riemann surfaces with arbitrary genus g. Upon AGT correspondence, these describe four dimensional N=2 SU(2)^{n+3g-3} gauge theories with generalized quiver diagrams. We obtain the generalized matrix models from the perturbative evaluation of the Liouville correlation functions and verify the consistency of the description with respect to degenerations of the Riemann surface. Moreover, we derive the Seiberg-Witten curve for the N=2 gauge theory as the spectral curve of the generalized matrix model, thus providing a check of AGT correspondence at all genera.Comment: 19 pages; v2: version to appear in JHE

    The transcription factor Spores Absent A is a PKA dependent inducer of Dictyostelium sporulation

    Get PDF
    Abstract Sporulation in Dictyostelium fruiting bodies evolved from amoebozoan encystation with both being induced by cAMP acting on PKA, but with downstream components still being unknown. Using tagged mutagenesis to find missing pathway components, we identified a sporeless mutant defective in a nuclear protein, SpaA. Expression of prespore genes was strongly reduced in spaA- cells, while expression of many spore stage genes was absent. Chromatin immunoprecipitation (ChIP) of a SpaA-YFP gene fusion showed that (pre)spore gene promoters bind directly to SpaA, identifying SpaA as a transcriptional regulator. SpaA dependent spore gene expression required PKA in vivo and was stimulated in vitro by the membrane-permeant PKA agonist 8Br-cAMP. The PKA agonist also promoted SpaA binding to (pre)spore promoters, placing SpaA downstream of PKA. Sequencing of SpaA-YFP ChIPed DNA fragments revealed that SpaA binds at least 117 (pre)spore promoters, including those of other transcription factors that activate some spore genes. These factors are not in turn required for spaA expression, identifying SpaA as the major trancriptional inducer of sporulation

    Genetic characterization of H5N1 influenza viruses isolated from chickens in Indonesia in 2010

    Get PDF
    Since 2003, highly pathogenic H5N1 avian influenza viruses have caused outbreaks among poultry in Indonesia every year, producing the highest number of human victims worldwide. However, little is known about the H5N1 influenza viruses that have been circulating there in recent years. We therefore conducted surveillance studies and isolated eight H5N1 viruses from chickens. Phylogenic analysis of their hemagglutinin and neuraminidase genes revealed that all eight viruses belonged to clade 2.1.3. However, on the basis of nucleotide differences, these viruses could be divided into two groups. Other viruses genetically closely related to these two groups of viruses were all Indonesian isolates, suggesting that these new isolates have been evolving within Indonesia. Among these viruses, two distinct viruses circulated in the Kalimantan islands during the same season in 2010. Our data reveal the continued evolution of H5N1 viruses in Indonesia
    corecore