268 research outputs found

    Resampling technique applied to statistics of microsegregation characterization

    Get PDF
    Characterization of chemical heterogeneities at the dendrite scale is of practical importance for understanding phase transformation either during solidification or during subsequent solid-state treatment. Spot analysis with electron probe is definitely well-suited to investigate such heterogeneities at the micron scale that is relevant for most solidified products. However, very few has been done about the statistics of experimental solute distributions gained from such analyses when they are now more and more used for validating simulation data. There are two main sources generating discrepancies between estimated and actual solute distributions in an alloy: i) data sampling with a limited number of measurements to keep analysis within a reasonable time length; and ii) uncertainty linked to the measurement process, namely the physical noise that accompanies X-ray emission. Focusing on the first of these sources, a few 2-D composition images have been generated by phase field modelling of a Mg-Al alloy. These images were then used to obtain "true" solute distributions to which to compare coarse grid analyses as generally performed with a microanalyser. Resampling, i.e. generating several distributions by grid analyses with limited number of picked-up values, was then used to get statistics of estimates of solute distribution. The discussion of the present results deals first with estimating the average solute content and then focuses on the distribution in the primary phase

    Formation and decay of the Rydberg states of multiply charged ions interacting with solid surfaces

    Get PDF
    Processes of formation and decay of the Rydberg states of multiply charged ions escaping solid surfaces with intermediate velocities (v approximate to 1 a.u.) represent complex quantum events that require a detailed quantum description. We have developed a two-state vector model for the population process, with the functions Psi(1) and Psi(2) for definition of the state of a single active electron. The electron exchange between the solid and the moving ion is described by a mixed flux through a plane positioned between them. For the low values of the angular momentum quantum numbers l the radial electronic coordinate rho can be neglected, whereas for the large-l values a wide space region around the projectile trajectory was taken into account. The reionization of the previously populated states is considered as a decay of the wave function Psi(2). The corresponding decay rates are obtained by an appropriate etalon equation method: in the large-l case the radial electronic coordinate rho is treated as a variational parameter. The theoretical predictions based on that population-reionization mechanism are compared with the available beam-foil experimental data, as well as the experimental data obtained in the interaction of multiply charged ions with micro-capillary foil. Generally, the model reproduces the experimentally observed non-linear trend of the l distributions from l = 0 to l(max) = n - 1.25th Summer School and International Symposium on the Physics of Ionized Gases - SPIG 2010, Aug 30-Sep 03, 2010, Donji Milanovac, Serbi

    Solidification of Al-Sn-Cu based immiscible alloys under intense shearing

    Get PDF
    The official published version of the Article can be accessed from the link below - Copyright @ 2009 The Minerals, Metals & Materials Society and ASM InternationalThe growing importance of Al-Sn based alloys as materials for engineering applications necessitates the development of uniform microstructures with improved performance. Guided by the recently thermodynamically assessed Al-Sn-Cu system, two model immiscible alloys, Al-45Sn-10Cu and Al-20Sn-10Cu, were selected to investigate the effects of intensive melt shearing provided by the novel melt conditioning by advanced shear technology (MCAST) unit on the uniform dispersion of the soft Sn phase in a hard Al matrix. Our experimental results have confirmed that intensive melt shearing is an effective way to achieve fine and uniform dispersion of the soft phase without macro-demixing, and that such dispersed microstructure can be further refined in alloys with precipitation of the primary Al phase prior to the demixing reaction. In addition, it was found that melt shearing at 200 rpm and 60 seconds will be adequate to produce fine and uniform dispersion of the Sn phase, and that higher shearing speed and prolonged shearing time can only achieve minor further refinement.This work is funded by the EPSRC and DT

    Josephson Vortex States in Intermediate Fields

    Full text link
    Motivated by recent resistance data in high TcT_c superconductors in fields {\it parallel} to the CuO layers, we address two issues on the Josephson-vortex phase diagram, the appearances of structural transitions on the observed first order transition (FOT) curve in intermediate fields and of a lower critical point of the FOT line. It is found that some rotated pinned solids are more stable than the ordinary rhombic pinned solids with vacant interlayer spacings and that, due to the vertical portion in higher fields of the FOT line, the FOT tends to be destroyed by creating a lower critical point.Comment: 12 pages, 3 figures. To appear in J.Phys.Soc.Jpn. 71, No.2 (February, 2002

    The London theory of the crossing-vortex lattice in highly anisotropic layered superconductors

    Full text link
    A novel description of Josephson vortices (JVs) crossed by the pancake vortices (PVs) is proposed on the basis of the anisotropic London theory. The field distribution of a JV and its energy have been calculated for both dense (aλJa\lambda_J) PV lattices with distance aa between PVs, and the nonlinear JV core size λJ\lambda_J. It is shown that the ``shifted'' PV lattice (PVs displaced mainly along JVs in the crossing vortex lattice structure), formed in high out-of-plane magnetic fields transforms into the PV lattice ``trapped'' by the JV sublattice at a certain field, lower than Ί0/Îł2s2\Phi_0/\gamma^2s^2, where Ί0\Phi_0 is the flux quantum, Îł\gamma is the anisotropy parameter and ss is the distance between CuO2_2 planes. With further decreasing BzB_z, the free energy of the crossing vortex lattice structure (PV and JV sublattices coexist separately) can exceed the free energy of the tilted lattice (common PV-JV vortex structure) in the case of Îłs<λab\gamma s<\lambda_{ab} with the in-plane penetration depth λab\lambda_{ab} if the low (Bx<γΊ0/λab2B_x<\gamma\Phi_0/\lambda_{ab}^2) or high (Bx≳Ω0/Îłs2B_x\gtrsim \Phi_0/\gamma s^2) in-plane magnetic field is applied. It means that the crossing vortex structure is realized in the intermediate field orientations, while the tilted vortex lattice can exist if the magnetic field is aligned near the cc-axis and the abab-plane as well. In the intermediate in-plane fields γΊ0/λab2â‰ČBxâ‰ČΊ0/Îłs2\gamma\Phi_0/\lambda_{ab}^2\lesssim B_x \lesssim \Phi_0/\gamma s^2, the crossing vortex structure with the ``trapped'' PV sublattice seems to settle in until the lock-in transition occurs since this structure has the lower energy with respect to the tilted vortex structure in the magnetic field H⃗{\vec H} oriented near the abab-plane.Comment: 15 pages, 6 figures, accepted for publication in PR

    Gauge Theory, Mirror Symmetry, and the Geometric Langlands Program

    Get PDF
    I provide an introduction to the recent work on the Montonen-Olive duality of N = 4 super-Yang-Mills theory and the Geometric Langlands Program

    Bcl-2 protein family: Implications in vascular apoptosis and atherosclerosis

    Get PDF
    Apoptosis has been recognized as a central component in the pathogenesis of atherosclerosis, in addition to the other human pathologies such as cancer and diabetes. The pathophysiology of atherosclerosis is complex, involving both apoptosis and proliferation at different phases of its progression. Oxidative modification of lipids and inflammation differentially regulate the apoptotic and proliferative responses of vascular cells during progression of the atherosclerotic lesion. Bcl-2 proteins act as the major regulators of extrinsic and intrinsic apoptosis signalling pathways and more recently it has become evident that they mediate the apoptotic response of vascular cells in response to oxidation and inflammation either in a provocative or an inhibitory mode of action. Here we address Bcl-2 proteins as major therapeutic targets for the treatment of atherosclerosis and underscore the need for the novel preventive and therapeutic interventions against atherosclerosis, which should be designed in the light of molecular mechanisms regulating apoptosis of vascular cells in atherosclerotic lesions

    The Protein Model Portal

    Get PDF
    Structural Genomics has been successful in determining the structures of many unique proteins in a high throughput manner. Still, the number of known protein sequences is much larger than the number of experimentally solved protein structures. Homology (or comparative) modeling methods make use of experimental protein structures to build models for evolutionary related proteins. Thereby, experimental structure determination efforts and homology modeling complement each other in the exploration of the protein structure space. One of the challenges in using model information effectively has been to access all models available for a specific protein in heterogeneous formats at different sites using various incompatible accession code systems. Often, structure models for hundreds of proteins can be derived from a given experimentally determined structure, using a variety of established methods. This has been done by all of the PSI centers, and by various independent modeling groups. The goal of the Protein Model Portal (PMP) is to provide a single portal which gives access to the various models that can be leveraged from PSI targets and other experimental protein structures. A single interface allows all existing pre-computed models across these various sites to be queried simultaneously, and provides links to interactive services for template selection, target-template alignment, model building, and quality assessment. The current release of the portal consists of 7.6 million model structures provided by different partner resources (CSMP, JCSG, MCSG, NESG, NYSGXRC, JCMM, ModBase, SWISS-MODEL Repository). The PMP is available at http://www.proteinmodelportal.org and from the PSI Structural Genomics Knowledgebase
    • 

    corecore