232 research outputs found

    Fourier analysis of wave turbulence in a thin elastic plate

    Full text link
    The spatio-temporal dynamics of the deformation of a vibrated plate is measured by a high speed Fourier transform profilometry technique. The space-time Fourier spectrum is analyzed. It displays a behavior consistent with the premises of the Weak Turbulence theory. A isotropic continuous spectrum of waves is excited with a non linear dispersion relation slightly shifted from the linear dispersion relation. The spectral width of the dispersion relation is also measured. The non linearity of this system is weak as expected from the theory. Finite size effects are discussed. Despite a qualitative agreement with the theory, a quantitative mismatch is observed which origin may be due to the dissipation that ultimately absorbs the energy flux of the Kolmogorov-Zakharov casade.Comment: accepted for publication in European Physical Journal B see http://www.epj.or

    Acceleration and vortex filaments in turbulence

    Full text link
    We report recent results from a high resolution numerical study of fluid particles transported by a fully developed turbulent flow. Single particle trajectories were followed for a time range spanning more than three decades, from less than a tenth of the Kolmogorov time-scale up to one large-eddy turnover time. We present some results concerning acceleration statistics and the statistics of trapping by vortex filaments.Comment: 10 pages, 5 figure

    Are there waves in elastic wave turbulence ?

    Full text link
    An thin elastic steel plate is excited with a vibrator and its local velocity displays a turbulent-like Fourier spectrum. This system is believed to develop elastic wave turbulence. We analyze here the motion of the plate with a two-point measurement in order to check, in our real system, a few hypotheses required for the Zakharov theory of weak turbulence to apply. We show that the motion of the plate is indeed a superposition of bending waves following the theoretical dispersion relation of the linear wave equation. The nonlinearities seem to efficiently break the coherence of the waves so that no modal structure is observed. Several hypotheses of the weak turbulence theory seem to be verified, but nevertheless the theoretical predictions for the wave spectrum are not verified experimentally.Comment: published in Physical Review Letters volume 100, 234505 (2008) http://link.aps.org/abstract/PRL/v100/e234505 minor modification

    Lagrangian Velocity Statistics in Turbulent Flows: Effects of Dissipation

    Full text link
    We use the multifractal formalism to describe the effects of dissipation on Lagrangian velocity statistics in turbulent flows. We analyze high Reynolds number experiments and direct numerical simulation (DNS) data. We show that this approach reproduces the shape evolution of velocity increment probability density functions (PDF) from Gaussian to stretched exponentials as the time lag decreases from integral to dissipative time scales. A quantitative understanding of the departure from scaling exhibited by the magnitude cumulants, early in the inertial range, is obtained with a free parameter function D(h) which plays the role of the singularity spectrum in the asymptotic limit of infinite Reynolds number. We observe that numerical and experimental data are accurately described by a unique quadratic D(h) spectrum which is found to extend from hmin0.18h_{min} \approx 0.18 to hmax1h_{max} \approx 1, as the signature of the highly intermittent nature of Lagrangian velocity fluctuations.Comment: 5 pages, 3 figures, to appear in PR

    Lagrangian stochastic modelling of acceleration in turbulent wall-bounded flows

    Get PDF
    The Lagrangian approach is natural for studying issues of turbulent dispersion and mixing. We propose in this work a general Lagrangian stochastic model for inhomogeneous turbulent flows, using velocity and acceleration as dynamical variables. The model takes the form of a diffusion process, and the coefficients of the model are determined via Kolmogorov theory and the requirement of consistency with velocity-based models. We show that this model generalises both the acceleration-based models for homogeneous flows as well as velocity-based generalised Langevin models. The resulting closed model is applied to a channel flow at high Reynolds number, and compared to experiments as well as direct numerical simulations. A hybrid approach coupling the stochastic model with a Reynolds-averaged Navier-Stokes model is used to obtain a self-consistent model, as is commonly used in probability density function methods. Results highlight that most of the acceleration features are well represented, notably the anisotropy between streamwise and wall-normal components and the strong intermittency. These results are valuable, since the model improves on velocity-based models for boundary layers while remaining relatively simple. Our model also sheds some light on the statistical mechanisms at play in the near-wall region

    Measurement of Lagrangian velocity in fully developed turbulence

    Full text link
    We have developed a new experimental technique to measure the Lagrangian velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler tracking. This method yields a direct access to the velocity of a single particule at a turbulent Reynolds number Rλ=740R_{\lambda} = 740. Its dynamics is analyzed with two decades of time resolution, below the Lagrangian correlation time. We observe that the Lagrangian velocity spectrum has a Lorentzian form EL(ω)=urms2TL/(1+(TLω)2)E^{L}(\omega) = u_{rms}^{2} T_{L} / (1 + (T_{L}\omega)^{2}), in agreement with a Kolmogorov-like scaling in the inertial range. The probability density function (PDF) of the velocity time increments displays a change of shape from quasi-Gaussian a integral time scale to stretched exponential tails at the smallest time increments. This intermittency, when measured from relative scaling exponents of structure functions, is more pronounced than in the Eulerian framework.Comment: 4 pages, 5 figures. to appear in PR

    Long time correlations in Lagrangian dynamics: a key to intermittency in turbulence

    Full text link
    New aspects of turbulence are uncovered if one considers flow motion from the perspective of a fluid particle (known as the Lagrangian approach) rather than in terms of a velocity field (the Eulerian viewpoint). Using a new experimental technique, based on the scattering of ultrasounds, we have obtained a direct measurement of particle velocities, resolved at all scales, in a fully turbulent flow. It enables us to approach intermittency in turbulence from a dynamical point of view and to analyze the Lagrangian velocity fluctuations in the framework of random walks. We find experimentally that the elementary steps in the 'walk' have random uncorrelated directions but a magnitude that is extremely long-range correlated in time. Theoretically, we study a Langevin equation that incorporates these features and we show that the resulting dynamics accounts for the observed one- and two-point statistical properties of the Lagrangian velocity fluctuations. Our approach connects the intermittent statistical nature of turbulence to the dynamics of the flow.Comment: 4 pages, 4 figure

    Investigation of a generalized Obukhov Model for Turbulence

    Full text link
    We introduce a generalization of Obukhov's model [A.M. Obukhov, Adv. Geophys. 6, 113 (1959)] for the description of the joint position-velocity statistics of a single fluid particle in fully developed turbulence. In the presented model the velocity is assumed to undergo a continuous time random walk. This takes into account long time correlations. As a consequence the evolution equation for the joint position-velocity probability distribution is a Fokker-Planck equation with a fractional time derivative. We determine the solution of this equation in the form of an integral transform and derive a relation for arbitrary single time moments. Analytical solutions for the joint probability distribution and its moments are given.Comment: 10 page

    Magnetic field reversals in an experimental turbulent dynamo

    Get PDF
    We report the first experimental observation of reversals of a dynamo field generated in a laboratory experiment based on a turbulent flow of liquid sodium. The magnetic field randomly switches between two symmetric solutions B and -B. We observe a hierarchy of time scales similar to the Earth's magnetic field: the duration of the steady phases is widely distributed, but is always much longer than the time needed to switch polarity. In addition to reversals we report excursions. Both coincide with minima of the mechanical power driving the flow. Small changes in the flow driving parameters also reveal a large variety of dynamo regimes.Comment: 5 pages, 4 figure
    corecore