1,509 research outputs found

    Using BATSE to measure gamma-ray burst polarization

    Get PDF
    We describe a technique for measuring the polarization of hard x-rays from γ-ray bursts based on the angular distribution of that portion of the flux which is scattered off the top of the Earth’s atmosphere. The scattering cross section depends not only on the scatter angle itself, but on the orientation of the scatter angle with respect to the incident polarization vector. Consequently, the distribution of the observed albedo flux will depend on the direction and the polarization properties (i.e., the level of polarization and polarization angle) of the source. Although the BATSE design (with its large field-of-view for each detector) is not optimized for albedo polarimetry, we have nonetheless investigated the feasibility of this technique using BATSE data

    Monitoring Cen X-3 with BATSE

    Get PDF
    The eight uncollimated BATSE Large Area Detectors (LAD's) provide the ability to monitor pulsed hard x ray sources on a nearly continuous basis. Using data from the LAD's, the pulse timing and pulsed flux of the 4.8 second period binary x ray pulsar Centaurus X-3 was analyzed over a two month period. The methods and initial results of this analysis, which includes both data folded onboard GRO and 1.024 second resolution discriminator rates folded on the ground, are presented

    Chandra localization of XTE J1906+090 and discovery of its optical and infrared counterparts

    Get PDF
    We present the Chandra identification and localization of the transient X-ray source XTE J1906+090 and the discovery of its optical and infrared counterparts. Our analysis of archival Chandra ACIS-I observations of the field found the source approximately 8 away from the position determined earlier with the RXTE PCA. We have confirmed the source identification with timing analysis of the X-ray data, which detected the source spin period of 89.6 s. The best Chandra position for the source is R.A. = 19h04m47491, decl. = +09024140. Subsequently, we performed optical observations of the field around the new location and discovered a coincident optical source with R-band magnitude of 18.7. A search in the Two Micron All Sky Survey catalog revealed an infrared point source with J = 15.2, H = 14.2, and K = 13.5, whose location is also coincident with our Chandra and optical positions. Our results add fresh evidence for a Be/X-ray transient nature for XTE J1906+090

    Observations of Accreting Pulsars

    Get PDF
    We discuss recent observations of accreting binary pulsars with the all-sky BATSE instrument on the Compton Gamma Ray Observatory. BATSE has detected and studied nearly half of the known accreting pulsar systems. Continuous timing studies over a two-year period have yielded accurate orbital parameters for 9 of these systems, as well as new insights into long-term accretion torque histories

    Recent Outbursts from the Transient X-Ray Pulsar Cep X-4 (GS 2138+56)

    Full text link
    We report on X-ray observations of the 66 s period transient X-ray pulsar Cep X-4 (GS 2138+56) with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory (CGRO) and with the Rossi X-ray Timing Explorer (RXTE). Two outbursts from Cep X-4 were observed with BATSE in 1993 June-July and 1997 July. Pulse frequencies of 15.0941 +/- 0.0002 mHz on 1993 June 25 (MJD 49,163) and 15.0882 +/- 0.0002 mHz on 1997 July 12 (MJD 50,641) were each measured from 2 day spans of BATSE data near each outburst's peak. Cep X-4 showed an average spin down rate of (-4.14 +/- 0.08)*10^(-14) Hz/s between the 1993 and 1997 outbursts. After BATSE could no longer detect Cep X-4, public observations were performed on 1997 July 18 & 25 with the Proportional Counter Array (PCA) on RXTE. A pulse frequency of 15.088 +/- 0.004 mHz was measured from observations on 1997 July 18 (MJD 50,647). Significant aperiodic noise, with an rms variance of ~18% in the frequency range 0.01-1.0 Hz was observed on both days. Energy and intensity dependent pulse shape variations were also seen in these data. Recently published optical observations associate Cep X-4 with a Be companion star. If all 4 outbursts observed from Cep X-4 are assumed to occur at the same orbital phase, we find that the orbital period is between 23 days and 147.3 days.Comment: 19 pages (LaTeX) including 9 figures. Accepted for publication in the Astrophysical Journa

    Variable Spin-down in the Soft Gamma Repeater SGR 1900+14 and Correlations with Burst Activity

    Get PDF
    We have analyzed Rossi X-ray Timing Explorer Proportional Counter Array observations of the pulsed emission from SGR 1900+14 during September 1996, June - October 1998, and early 1999. Using these measurements and results reported elsewhere, we construct a period history of this source for 2.5 years. We find significant deviations from a steady spin-down trend during quiescence and the burst active interval. Burst and Transient Source Experiment observations of the burst emission are presented and correlations between the burst activity and spin-down rate of SGR 1900+14 are discussed. We find an 80 day interval during the summer of 1998 when the average spin-down rate is larger than the rate elsewhere by a factor ~ 2.3. This enhanced spin-down may be the result of a discontinuous spin-down event or ``braking glitch'' at the time of the giant flare on 27 August 1998. Furthermore, we find a large discrepancy between the pulsar period and average spin-down rate in X-rays as compared to radio observations for December 1998 and January 1999.Comment: 6 pages, 2 figures, submitted to ApJ Letter

    On the Correlation of Torque and Luminosity in GX 1+4

    Get PDF
    Over five years of daily hard X-ray (>20 keV) monitoring of the 2-min accretion-powered pulsar GX 1+4 with the Compton Gamma Ray Observatory/BATSE large-area detectors has found nearly continuous rapid spin-down, interrupted by a bright 200-d spin-up episode. During spin-down, the torque becomes more negative as the luminosity increases (assuming that the 20-60 keV pulsed flux traces bolometric luminosity), the opposite of what is predicted by standard accretion torque theory. No changes in the shape of the 20-100 keV pulsed energy spectrum were detected, so that a very drastic change in the spectrum below 20 keV or the pulsed fraction would be required to make the 20-60 keV pulsed flux a poor luminosity tracer. These are the first observations which flatly contradict standard magnetic disk accretion theory, and they may have important implications for understanding the spin evolution of X-ray binaries, cataclysmic variables, and protostars. We briefly discuss the possibility that GX 1+4 may be accreting from a retrograde disk during spin-down, as previously suggested.Comment: 10 pages including 3 PS figures. To appear in ApJ Letter

    On the nature of the ultraluminous X-ray transient in Cen~A (NGC 5128)

    Full text link
    We combine 9 ROSAT, 9 Chandra, and 2 XMM-Newton observations of the Cen~A galaxy to obtain the X-ray light curve of 1RXH J132519.8-430312 (=CXOU J132519.9-430317) spanning 1990 to 2003. The source reached a peak 0.1-2.4 keV flux F_X>10^{-12} ergs cm^{-2} s^{-1} during a 10~day span in 1995 July. The inferred peak isotropic luminosity of the source therefore exceeded 3 10^{39} ergs s^{-1}, which places the source in the class of ultra-luminous X-ray sources. Coherent pulsations at 13.264 Hz are detected during a second bright episode (F_X >3 times 10^{-13} ergs cm^{-2} s^{-1}) in 1999 December. The source is detected and varies significantly within three additional observations but is below the detection threshold in 7 observations. The X-ray spectrum in 1999 December is best described as a cut-off power law or a disk-blackbody (multi-colored disk). We also detect an optical source, m_F555W ~ 24.1 mag, within the Chandra error circle of 1RXH J132519.8-430312 in HST images taken 195~days before the nearest X-ray observation. The optical brightness of this source is consistent with a late O or early B star at the distance of Cen A. If the optical source is the counterpart, then the X-ray and optical behavior of 1RXH J132519.8-430312 are similar to the transient Be/X-ray pulsar A 0538-66.Comment: 7 pages, 8 figures. ApJ (accepted
    corecore