3,514 research outputs found

    Low-Temperature Solution-Processed Electron Transport Layers for Inverted Polymer Solar Cells

    Get PDF
    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimProcessing temperature is highlighted as a convenient means of controlling the optical and charge transport properties of solution processed electron transport layers (ETLs) in inverted polymer solar cells. Using the well-studied active layer – poly(3-hexylthiophene-2,5-diyl):indene-C60 bisadduct – the influence of ETL processing temperatures from 25 to 450 °C is shown, reporting the role of crystallinity, structure, charge transport, and Fermi level (EF) on numerous device performance characteristics. It has been determined that an exceptionally low temperature processed ETL (110 °C) increases device power conversion efficiency by a factor greater than 50% compared with a high temperature (450 °C) processed ETL. Modulations in device series and shunt resistance, induced by changes in the ETL transport properties, are observed in parallel to significant changes in device open circuit voltage attributed to changes on the EF of the ETLs. This work highlights the importance of interlayer control in multilayer photovoltaic devices and presents a convenient material compatible with future flexible and roll-to-roll processes

    Phase II evaluation of VDC-1101 in canine cutaneous T-cell lymphoma.

    Get PDF
    BackgroundCanine cutaneous T-cell lymphoma (CTCL) is an uncommon disease for which efficacious therapies are lacking. The novel anticancer nucleotide prodrug VDC-1101 (formerly known as GS-9219) has shown efficacy in dogs with multicentric lymphoma. One of the observed adverse effects with this drug was a skin change characterized by hair loss, erythema, and pruritus, implying delivery of VDC-1101 to the skin.Hypothesis/objectivesThe primary study objective was to identify the objective response rate (ORR) to VDC-1101 in canine CTCL; secondary objectives included characterization of progression-free survival (PFS) and adverse events (AEs).AnimalsTwelve dogs with chemotherapy-naïve or relapsed, histologically and immunohistochemically confirmed CTCL.MethodsDogs received VDC-1101 as a 30-minute IV infusion once every 21 days. Prednisone (1 mg/kg PO q48h) was administered concurrently.ResultsIn 11 evaluable patients, responses included 1 complete response (CR), 4 partial responses (PR), 2 stable disease (SD), and 4 progressive disease for an ORR of 45% and biologic response rate (CR/PR/SD) of 64%. The median PFS was 37.5 days (26 to >399 days), which includes 1 durable and ongoing CR (>1 year). Gastrointestinal and hematologic AEs were mild; no dogs developed grade 3 or 4 AEs. Three dogs developed dermatopathies and 1 of these dogs was removed from the study as a result of this AE.Conclusions and clinical importanceVDC-1101 has activity against canine CTCL and could provide another treatment option in a disease process with a poor prognosis

    Energy quantization in solution-processed layers of indium oxide and their application in resonant tunneling diodes

    Get PDF
    \u3cp\u3eThe formation of quantized energy states in ultrathin layers of indium oxide (In\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e) grown via spin coating and thermally annealed at 200°C in air is studied. Optical absorption measurements reveal a characteristic widening of the optical band gap with reducing In\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e layer thickness from ≈43 to ≈3 nm in agreement with theoretical predictions for an infinite quantum well. Through sequential deposition of In\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e and gallium oxide (Ga\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e) layers, superlattice-like structures with controlled dimensionality and spatially varying conduction band characteristics are demonstrated. This simple method is then explored for the fabrication of functional double-barrier resonant tunneling diodes. Nanoscale current mapping analysis using conductive atomic force microscopy reveals that resonant tunneling is not uniform but localized in specific regions of the apparent device area. The latter observation is attributed to variation in the layer(s) thickness of the In\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e quantum well and/or the Ga\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e barrier layers. Despite the nonidealities, the tremendous potential of solution-processable oxide semiconductors for the development of quantum effect devices that have so far been demonstrated only via sophisticated growth techniques is demonstrated.\u3c/p\u3

    Integration of aquifer geology, groundwater flow and arsenic distribution in deltaic aquifers - A unifying concept

    Get PDF
    Groundwater arsenic (As) presents a public health risk of great magnitude in densely populated Asian delta regions, most acutely in the Bengal Basin (West Bengal, India and Bangladesh). Research has focused on the sources, mobilisation, and heterogeneity of groundwater As, but a consistent explanation of As distribution from local to basin scale remains elusive. We show for the Bengal Aquifer System that the numerous, discontinuous silt‐clay layers together with surface topography impose a hierarchical pattern of groundwater flow, which constrains As penetration into the aquifer and controls its redistribution towards discharge zones, where it is re‐sequestered to solid phases. This is particularly so for the discrete periods of As release to groundwater in the shallow subsurface associated with sea level high‐stand conditions of Quaternary inter‐glacial periods. We propose a hypothesis concerning groundwater flow (Silt‐clay layers Impose Hierarchical groundwater flow patterns constraining Arsenic progression [SIHA]), which links consensus views on the As source and history of sedimentation in the basin to the variety of spatial and depth distributions of groundwater As reported in the literature. SIHA reconciles apparent inconsistencies between independent, in some cases contrasting, field observations. We infer that lithological and topographic controls on groundwater flow, inherent to SIHA, apply more generally to deltaic aquifers elsewhere. The analysis suggests that groundwater As may persist in the aquifers of Asian deltas over thousands of years, but in certain regions, particularly at deeper levels, As will not exceed low background concentrations unless groundwater flow systems are short‐circuited by excessive pumping

    High fluxes of deep volatiles from ocean island volcanoes: Insights from El Hierro, Canary Islands

    Get PDF
    Basaltic volcanism contributes significant fluxes of volatiles (CO2, H2O, S, F, Cl) to the Earth’s surface environment. Quantifying volatile fluxes requires initial melt volatile concentrations to be determined, which can be accessed through crystal-hosted melt inclusions. However, melt inclusions in volatile-rich mafic alkaline basalts, such as those erupted at ocean islands, often trap partially degassed melts, meaning that magmatic volatile fluxes from these tectonic settings are often significantly underestimated. We have measured major, trace element and volatile concentrations in melt inclusions from a series of young (<20 ka) basanites from El Hierro, Canary Islands. Our melt inclusions show some of the highest CO2 (up to 3600 ppm) and S (up to 4290 ppm) concentrations measured in ocean island basalts to date, in agreement with data from the recent 2011-2012 eruption. Volatile enrichment is observed in melt inclusions with crystallisation-controlled major element compositions and highly variable trace element ratios such as La/Yb. We use volatile-trace element ratios to calculate original magmatic CO2 contents up to 4.2 wt%, which indicates at least 65% of the original CO2 was degassed prior to melt inclusion trapping. The trace element contents and ratios of El Hierro magmas are best reproduced by 1-8% partial melting of a garnet lherzolite mantle source. Our projected CO2 (200-680 ppm) and S (265-450 ppm) concentrations for the source are consistent with upper estimates for primitive mantle. However, El Hierro magmas have elevated F/Nd and F/Cl in comparison with melts from a primitive mantle, indicating that the mantle must also contain a component enriched in F and other volatiles, most probably recycled oceanic lithosphere. Our modelled original magmatic CO2 contents indicates that, per mass unit, volatile fluxes from El Hierro magmas are up to two orders of magnitude greater than from typical mid-ocean ridge basalts and 1.5 to 7 times greater than from recent Icelandic eruptions, indicating large variability in the primary volatile content of magmas formed in di fferent geodynamic settings, or even within di fferent ocean islands. Our results highlight the importance of characterising mantle heterogeneity in order to accurately constrain both short- and long-term magmatic volatile emissions and fluxes from ocean island volcanoes.NERC studentship NE/L002469/1 NERC grant 526 IMF600/101

    The Private Higgs

    Get PDF
    We introduce Higgs democracy in the Yukawa sector by constructing a model with a private Higgs and a dark scalar for each fermion thus addressing the large hierarchy among fermion masses. The model has interesting implications for the LHC, while the Standard Model phenomenology is recovered at low energies. We discuss some phenomenological implications such as FCNC, new Higgses at the TeV scale and dark matter candidates.Comment: 8 pages, no figures. Version published in Phys. Lett.

    An all-electric single-molecule hybridisation detector for short DNA fragments

    Get PDF
    In combining DNA nanotechnology and high-bandwidth single-molecule detection in nanopipettes, we demonstrate an all-electric, label-free hybridisation sensor for short DNA sequences (< 100 nt). Such short fragments are known to occur as circulating cell-free DNA in various bodily fluids, such as blood plasma and saliva, and have been identified as disease markers for cancer and infectious diseases. To this end, we use as a model system a 88-mer target from the RV1910c gene in Mycobacterium tuberculosis that is associated with antibiotic (isoniazid) resistance in TB. Upon binding to short probes attached to long carrier DNA, we show that resistive pulse sensing in nanopipettes is capable of identifying rather subtle structural differences, such as the hybridisation state of the probes, in a statistically robust manner. With significant potential towards multiplexing and high-throughput analysis, our study points towards a new, single-molecule DNA assay technology that is fast, easy to use and compatible with point of care environments

    Dynein structure and power stroke

    Get PDF
    Dynein ATPases are microtubule motors that are critical to diverse processes such as vesicle transport and the beating of sperm tails; however, their mechanism of force generation is unknown. Each dynein comprises a head, from which a stalk and a stem emerge. Here we use electron microscopy and image processing to reveal new structural details of dynein c, an isoform from Chlamydomonas reinhardtii flagella, at the start and end of its power stroke. Both stem and stalk are flexible, and the stem connects to the head by means of a linker approximately 10 nm long that we propose lies across the head. With both ADP and vanadate bound, the stem and stalk emerge from the head 10 nm apart. However, without nucleotide they emerge much closer together owing to a change in linker orientation, and the coiled-coil stalk becomes stiffer. The net result is a shortening of the molecule coupled to an approximately 15-nm displacement of the tip of the stalk. These changes indicate a mechanism for the dynein power stroke

    Constraint of the magnetic moment of the top quark

    Full text link
    We derive a bound on the magnetic dipole moment of the top quark in the context of the effective Lagrangian approach by using the values of the ratio Rb=Γb/ΓhR_b = \Gamma_b/\Gamma_h, Rl=Γh/ΓlR_l = \Gamma_h/\Gamma_l and ΓZ\Gamma_Z. We found that the oblique corrections are more sensible than the vertex ones for this moment.Comment: 6 pages, 3 figures, RevTe
    corecore