50 research outputs found
The X10 Flare on 2003 October 29: Triggered by Magnetic Reconnection between Counter-Helical Fluxes?
Vector magnetograms taken at Huairou Solar Observing Station (HSOS) and Mees
Solar Observatory (MSO) reveal that the super active region (AR) NOAA 10486 was
a complex region containing current helicity flux of opposite signs. The main
positive sunspots were dominated by negative helicity fields, while positive
helicity patches persisted both inside and around the main positive sunspots.
Based on a comparison of two days of deduced current helicity density,
pronounced changes were noticed which were associated with the occurrence of an
X10 flare that peaked at 20:49 UT, 2003 October 29. The average current
helicity density (negative) of the main sunspots decreased significantly by
about 50. Accordingly, the helicity densities of counter-helical patches
(positive) were also found to decay by the same proportion or more. In
addition, two hard X-ray (HXR) `footpoints' were observed by the Reuven Ramaty
High Energy Solar Spectroscopic Imager (RHESSI} during the flare in the 50-100
keV energy range. The cores of these two HXR footpoints were adjacent to the
positions of two patches with positive current helicity which disappeared after
the flare. This strongly suggested that the X10 flare on 2003 Oct. 29 resulted
from reconnection between magnetic flux tubes having opposite current helicity.
Finally, the global decrease of current helicity in AR 10486 by ~50% can be
understood as the helicity launched away by the halo coronal mass ejection
(CME) associated with the X10 flare.Comment: Solar Physics, 2007, in pres
A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source
We present a quantitative model of the magnetic energy stored and then
released through magnetic reconnection for a flare on 26 Feb 2004. This flare,
well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only
for a brief, early phase. Throughout the main period of energy release there is
a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare
loops. Our model describes the heating and compression of such a source by
localized, transient magnetic reconnection. It is a three-dimensional
generalization of the Petschek model whereby Alfven-speed retraction following
reconnection drives supersonic inflows parallel to the field lines, which form
shocks heating, compressing, and confining a loop-top plasma plug. The
confining inflows provide longer life than a freely-expanding or
conductively-cooling plasma of similar size and temperature. Superposition of
successive transient episodes of localized reconnection across a current sheet
produces an apparently persistent, localized source of high-temperature
emission. The temperature of the source decreases smoothly on a time scale
consistent with observations, far longer than the cooling time of a single
plug. Built from a disordered collection of small plugs, the source need not
have the coherent jet-like structure predicted by steady-state reconnection
models. This new model predicts temperatures and emission measure consistent
with the observations of 26 Feb 2004. Furthermore, the total energy released by
the flare is found to be roughly consistent with that predicted by the model.
Only a small fraction of the energy released appears in the super-hot source at
any one time, but roughly a quarter of the flare energy is thermalized by the
reconnection shocks over the course of the flare. All energy is presumed to
ultimately appear in the lower-temperature T<20 MK, post-flare loops
Evolution and Flare Activity of Delta-Sunspots in Cycle 23
The emergence and magnetic evolution of solar active regions (ARs) of
beta-gamma-delta type, which are known to be highly flare-productive, were
studied with the SOHO/MDI data in Cycle 23. We selected 31 ARs that can be
observed from their birth phase, as unbiased samples for our study. From the
analysis of the magnetic topology (twist and writhe), we obtained the following
results. i) Emerging beta-gamma-delta ARs can be classified into three
topological types as "quasi-beta", "writhed" and "top-to-top". ii) Among them,
the "writhed" and "top-to-top" types tend to show high flare activity. iii) As
the signs of twist and writhe agree with each other in most cases of the
"writhed" type (12 cases out of 13), we propose a magnetic model in which the
emerging flux regions in a beta-gamma-delta AR are not separated but united as
a single structure below the solar surface. iv) Almost all the "writhed"-type
ARs have downward knotted structures in the mid portion of the magnetic flux
tube. This, we believe, is the essential property of beta-gamma-delta ARs. v)
The flare activity of beta-gamma-delta ARs is highly correlated not only with
the sunspot area but also with the magnetic complexity. vi) We suggest that
there is a possible scaling-law between the flare index and the maximum umbral
area
3D MHD Flux Emergence Experiments: Idealized models and coronal interactions
This paper reviews some of the many 3D numerical experiments of the emergence
of magnetic fields from the solar interior and the subsequent interaction with
the pre-existing coronal magnetic field. The models described here are
idealized, in the sense that the internal energy equation only involves the
adiabatic, Ohmic and viscous shock heating terms. However, provided the main
aim is to investigate the dynamical evolution, this is adequate. Many
interesting observational phenomena are explained by these models in a
self-consistent manner.Comment: Review article, accepted for publication in Solar Physic
Fractal Reconnection in Solar and Stellar Environments
Recent space based observations of the Sun revealed that magnetic
reconnection is ubiquitous in the solar atmosphere, ranging from small scale
reconnection (observed as nanoflares) to large scale one (observed as long
duration flares or giant arcades). Often the magnetic reconnection events are
associated with mass ejections or jets, which seem to be closely related to
multiple plasmoid ejections from fractal current sheet. The bursty radio and
hard X-ray emissions from flares also suggest the fractal reconnection and
associated particle acceleration. We shall discuss recent observations and
theories related to the plasmoid-induced-reconnection and the fractal
reconnection in solar flares, and their implication to reconnection physics and
particle acceleration. Recent findings of many superflares on solar type stars
that has extended the applicability of the fractal reconnection model of solar
flares to much a wider parameter space suitable for stellar flares are also
discussed.Comment: Invited chapter to appear in "Magnetic Reconnection: Concepts and
Applications", Springer-Verlag, W. D. Gonzalez and E. N. Parker, eds. (2016),
33 pages, 18 figure
Flux-rope twist in eruptive flares and CMEs : due to zipper and main-phase reconnection
Funding: UK Science and Technology Facilities CouncilThe nature of three-dimensional reconnection when a twisted flux tube erupts during an eruptive flare or coronal mass ejection is considered. The reconnection has two phases: first of all, 3D “zipper reconnection” propagates along the initial coronal arcade, parallel to the polarity inversion line (PIL); then subsequent quasi-2D “main phase reconnection” in the low corona around a flux rope during its eruption produces coronal loops and chromospheric ribbons that propagate away from the PIL in a direction normal to it. One scenario starts with a sheared arcade: the zipper reconnection creates a twisted flux rope of roughly one turn (2π radians of twist), and then main phase reconnection builds up the bulk of the erupting flux rope with a relatively uniform twist of a few turns. A second scenario starts with a pre-existing flux rope under the arcade. Here the zipper phase can create a core with many turns that depend on the ratio of the magnetic fluxes in the newly formed flare ribbons and the new flux rope. Main phase reconnection then adds a layer of roughly uniform twist to the twisted central core. Both phases and scenarios are modeled in a simple way that assumes the initial magnetic flux is fragmented along the PIL. The model uses conservation of magnetic helicity and flux, together with equipartition of magnetic helicity, to deduce the twist of the erupting flux rope in terms the geometry of the initial configuration. Interplanetary observations show some flux ropes have a fairly uniform twist, which could be produced when the zipper phase and any pre-existing flux rope possess small or moderate twist (up to one or two turns). Other interplanetary flux ropes have highly twisted cores (up to five turns), which could be produced when there is a pre-existing flux rope and an active zipper phase that creates substantial extra twist.PostprintPublisher PDFPeer reviewe
The Origin, Early Evolution and Predictability of Solar Eruptions
Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt
Distribution of electric currents in solar active regions
There has been a long-standing debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After the region has formed and flux emergence has ceased, the strong magnetic fields in the region's center are connected solely by direct currents, and the total direct current is several times larger than the total return current. These results suggest that active regions, the main sources of coronal mass ejections and flares, are born with substantial net currents, in agreement with recent observations. Furthermore, they support eruption models that employ pre-eruption magnetic fields containing such currents